#### 1. Generic Matrix

| Element of examination | Competence                     | Weight in % | Evaluation/Marking                                         | Weight in marks |
|------------------------|--------------------------------|-------------|------------------------------------------------------------|-----------------|
|                        | Knowledge and<br>Comprehension | ± 37 %      |                                                            | ± 11            |
|                        | Application                    | ± 37 %      | Donor coosific                                             | ± 11            |
| Fields                 | Analysis and<br>Evaluation     | $\pm$ 16 %  | <ul> <li>Paper-specific</li> <li>Marking Scheme</li> </ul> | ± 5             |
|                        | Written<br>Communication       | $\pm$ 10 %  |                                                            | ± 3             |
|                        |                                | 100 %       |                                                            | 30              |
|                        | Knowledge and<br>Comprehension | ± 37 %      |                                                            | ± 11            |
|                        | Application                    | ± 37 %      | ± 37 % Paper-specific                                      | ± 11            |
| Waves                  | Analysis and<br>Evaluation     | ± 16 %      | Marking Scheme                                             | ± 5             |
|                        | Written<br>Communication       | $\pm$ 10 %  |                                                            | ± 3             |
|                        |                                | 100 %       |                                                            | 30              |
|                        | Knowledge and<br>Comprehension | ± 35 %      |                                                            | ± 7             |
|                        | Application                    | ± 35 %      | – Paper-specific                                           | ± 7             |
| Atomic Physics         | Analysis and<br>Evaluation     | ± 20 %      | Marking Scheme                                             | ± 4             |
|                        | Written<br>Communication       | $\pm$ 10 %  |                                                            | ± 2             |
|                        |                                | 100 %       |                                                            | 20              |
|                        | Knowledge and<br>Comprehension | ± 35 %      |                                                            | ± 7             |
|                        | Application                    | ± 35 %      | – Paper-specific                                           | ± 7             |
| Nuclear Physics        | Analysis and<br>Evaluation     | ± 20 %      | Marking Scheme                                             | ± 4             |
|                        | Written<br>Communication       | $\pm$ 10 %  |                                                            | ± 2             |
|                        |                                | 100 %       |                                                            | 20              |
|                        |                                |             |                                                            |                 |
| Total Exam             |                                |             |                                                            | 100             |

In each section a deviation of up to 5% will be tolerated as long as the total number of marks (30 points respectively 20 points) is respected for each question.

## 2. Paper-specific Matrix

| Element of examination | Competence                     | Weight in % | Evaluation/Marking                                     | Weight in marks |
|------------------------|--------------------------------|-------------|--------------------------------------------------------|-----------------|
|                        | Knowledge and<br>Comprehension | 35.0 %      |                                                        | 10.5            |
|                        | Application                    | 38.3 %      | Paper-specific                                         | 11.5            |
| Fields                 | Analysis and<br>Evaluation     | 18.3 %      | <ul> <li>Marking Scheme</li> <li>see part 4</li> </ul> | 5.5             |
|                        | Written<br>Communication       | 8.3 %       |                                                        | 2.5             |
|                        |                                | 100 %       |                                                        | 30              |
|                        | Knowledge and<br>Comprehension | 40.0 %      |                                                        | 12.0            |
|                        | Application                    | 33.3 %      | Paper-specific<br>Marking Scheme                       | 10.0            |
| Waves                  | Analysis and<br>Evaluation     | 16.7 %      | see part 4                                             | 5.0             |
|                        | Written<br>Communication       | 10.0 %      |                                                        | 3.0             |
|                        |                                | 100 %       |                                                        | 30              |
|                        | Knowledge and<br>Comprehension | 32.5 %      |                                                        | 6.5             |
|                        | Application                    | 37.5 %      | Paper-specific                                         | 7.5             |
| Atomic Physics         | Analysis and<br>Evaluation     | 20.0 %      | <ul> <li>Marking Scheme</li> <li>see part 4</li> </ul> | 4.0             |
|                        | Written<br>Communication       | 10.0 %      |                                                        | 2.0             |
|                        |                                | 100 %       |                                                        | 20              |
|                        | Knowledge and<br>Comprehension | 35.0 %      |                                                        | 7.0             |
|                        | Application                    | 35.0 %      | Paper-specific                                         | 7.0             |
| Nuclear Physics        | Analysis and<br>Evaluation     | 17.5 %      | <ul> <li>Marking Scheme</li> <li>see part 4</li> </ul> | 3.5             |
|                        | Written<br>Communication       | 12.5 %      |                                                        | 2.5             |
|                        |                                | 100 %       |                                                        | 20              |
|                        |                                |             |                                                        |                 |
| Total Exam             |                                |             |                                                        | 100             |

|    |                                                    |                                                                                                        | Question 1                              |                                                    |         |         |
|----|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|---------|---------|
|    |                                                    | Part A                                                                                                 |                                         | Pa                                                 | ige 1/4 | Marks   |
|    | a much greate<br>astronomers a<br>composed of      | is an ultra-cool re<br>er mass than the p<br>announced that th<br>seven planets.<br>on, assume that al | planet Jupiter. On<br>e planetary syste | February 22 <sup>nd</sup> , 2<br>m of this star is | 2018,   |         |
|    |                                                    | The TRAPP                                                                                              | ST-1 planetary sy                       | /stem                                              |         |         |
|    | Planet                                             | Mass<br>(Earth masses)                                                                                 | Orbital radius<br>(10 <sup>6</sup> km)  | Orbital period<br>(Earth days)                     |         |         |
|    | b                                                  | 1.02                                                                                                   | 1.73                                    | 1.51                                               |         |         |
|    | С                                                  | 1.16                                                                                                   | 2.37                                    | 2.42                                               |         |         |
|    | d                                                  | 0.30                                                                                                   | 3.33                                    | 4.05                                               |         |         |
|    | е                                                  | 0.77                                                                                                   | 4.38                                    | 6.10                                               |         |         |
|    | f                                                  | 0.93                                                                                                   | 5.76                                    | 9.21                                               |         |         |
|    | g                                                  | 1.14                                                                                                   | 7.01                                    | 12.35                                              |         |         |
|    | h                                                  | 0.33<br>Vikipedia EN, Jan 18 <sup>th</sup> , 2                                                         | 9.27                                    | 18.77                                              |         |         |
| a) | <i>T</i> is the orbita                             | w states that for p<br>I period and <i>r</i> the<br>s 3 <sup>rd</sup> law using da                     | orbital radius.                         |                                                    |         | 3 marks |
|    |                                                    | s 5 law using da                                                                                       | ta for 2 planets in                     |                                                    | ve.     | 5 marks |
| b) | Show that the $v_{\rm e} = 5.22 \times 10^{\circ}$ | orbital velocity of $^{4}$ m s <sup>-1</sup> .                                                         | <sup>:</sup> planet "e" is equa         | al to                                              |         | 3 marks |
| c) |                                                    | lanets that are orl<br>eir orbital velocitie                                                           |                                         |                                                    | a star, |         |
|    |                                                    | $\frac{V_1}{V_2} = $                                                                                   | $\frac{\overline{r_2}}{r_1}$ .          |                                                    |         |         |
|    | Derive this ex                                     | pression.                                                                                              |                                         |                                                    |         | 3 marks |
| d) |                                                    | anets of TRAPPIS                                                                                       | T-1 has an orbita                       | velocity of                                        |         |         |
|    | Which planet                                       | is it?                                                                                                 |                                         |                                                    |         | 3 marks |

| Question 1 |                                                                                                                   |                    |         |
|------------|-------------------------------------------------------------------------------------------------------------------|--------------------|---------|
|            | Part A                                                                                                            | Page 2/4           | Marks   |
| e)         | i. Show that the total mechanical energy of a planet orbiting star is given by                                    | around a           | 3 marks |
|            | $E_{\rm tot} = -G \frac{mM}{2r}$ ,                                                                                |                    |         |
|            | where <i>m</i> is the mass of the planet, <i>M</i> the mass of the star distance between the planet and the star. | , and <i>r</i> the |         |
|            | ii. The mass of TRAPPIST-1 is $1.77 \times 10^{29}$ kg.                                                           |                    |         |
|            | Calculate the total mechanical energy of planet "e".                                                              |                    | 1 mark  |

| Part A                           |                                                                       |  |
|----------------------------------|-----------------------------------------------------------------------|--|
| <u>Given</u> :                   |                                                                       |  |
| mass of the Earth                | $m_{\rm E} = 5.97 \times 10^{24}  {\rm kg}$                           |  |
| universal gravitational constant | $G = 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$ |  |
|                                  |                                                                       |  |

| Question 1                                                                                                                                                                                                                                                          |                         |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|
| Part B                                                                                                                                                                                                                                                              | Page 3/4                | Marks |
| A cyclotron is a particle accelerator. It consists of two hollow cylinders $D_1$ and $D_2$ , known as Dees, separated by a narrow figure below).<br>In an experiment, protons are emitted with negligible initial with source S.                                    | v gap (see              |       |
| In the gap between the Dees, the protons are accelerated by difference U. The potential difference changes sign after evor of the protons through the gap. The absolute value of this protone difference is $U = 1.00 \times 10^4$ V when a proton crosses the gap. | ery passage<br>otential |       |
| A uniform magnetic field $\vec{B}$ with $B = 1.00$ T is present inside with a direction parallel to the axis of the half-cylinders.                                                                                                                                 | e the Dees,             |       |
| The subsequent trajectory of the protons in each Dee is circ radius increases after each crossing through the gap.                                                                                                                                                  | cular. The              |       |
|                                                                                                                                                                                                                                                                     |                         |       |

| Question 1 |                                                                                                                                                                                         |            |         |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|--|
|            | Part B                                                                                                                                                                                  | Page 4/4   | Marks   |  |
| a)         | A proton enters a Dee with speed <i>v</i> .<br><b>i.</b> Show that the radius <i>R</i> of its trajectory is given by:<br>$R = \frac{m_p v}{e B}$                                        |            | 3 marks |  |
|            | <b>ii.</b> Show, by deriving a formula for the time $\Delta t$ spent in a l this time is independent of speed.                                                                          | Dee, that  | 2 marks |  |
| b)         | i. Show that the increase in kinetic energy of a proton fo crossing is $1.00 \times 10^4 \text{ eV}$ .                                                                                  | r each gap | 2 marks |  |
|            | <b>ii.</b> Calculate the radius $R_1$ of the first circular trajectory.                                                                                                                 |            | 3 marks |  |
| c)         | A proton accelerated by the cyclotron has its maximum ener<br>the Dee after its last revolution. The radius of the trajectory a<br>from the cyclotron is $R_{max} = 0.289 \mathrm{m}$ . | •••        |         |  |
|            | i. Show that the maximum kinetic energy of this proton is $E_{max} = 4.00 \text{ MeV}$ .                                                                                                | 6          | 3 marks |  |
|            | <ol> <li>Calculate the number of revolutions necessary for this<br/>acquire the maximum kinetic energy.</li> </ol>                                                                      | proton to  | 1 mark  |  |

|                    | Part B                                     |
|--------------------|--------------------------------------------|
| <u>Given</u> :     |                                            |
| elementary charge  | $e = 1.60 \times 10^{-19}$ C               |
| mass of the proton | $m_{\rm p} = 1.67 \times 10^{-27}  \rm kg$ |
|                    |                                            |

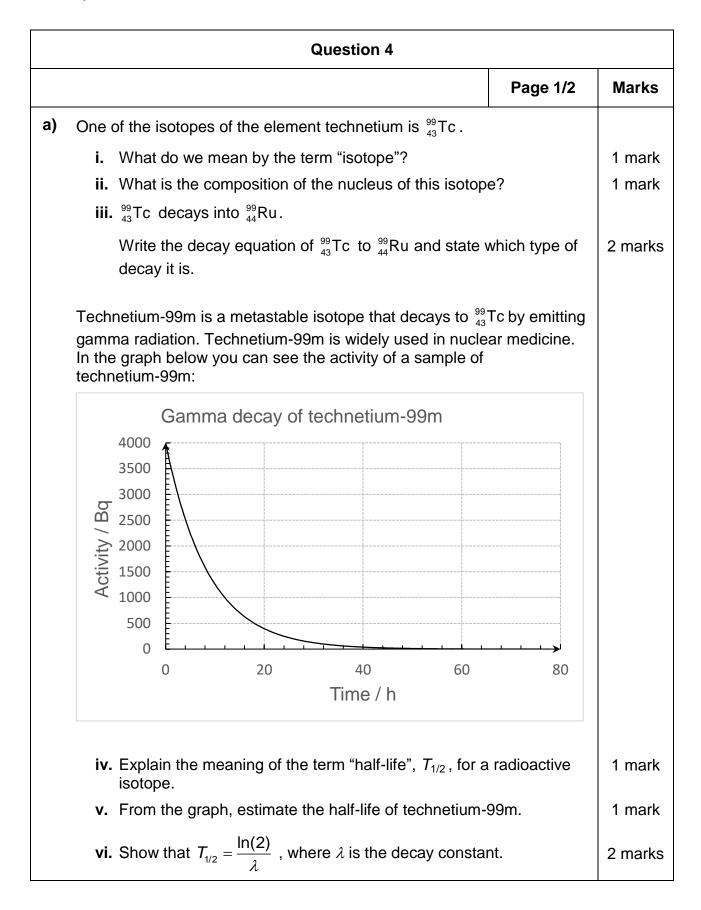
| Question 2 |                                                                                                                                                                                                                                                                                                  |          |         |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--|
|            | Part A                                                                                                                                                                                                                                                                                           | Page 1/3 | Marks   |  |
|            | The lengths of organ pipes vary between several metres and a few centimetres. Some of the pipes are open at both ends ("open pipes") and others are open at one end and closed at the other end ("closed pipes").<br>The human ear can hear sounds with frequencies between 20 Hz and 16 000 Hz. |          |         |  |
| a)         | <ol> <li>For both types of pipes, sketch diagrams of the fund<br/>and the first overtone, indicating the position of the r</li> </ol>                                                                                                                                                            |          | 4 marks |  |
|            | <ol> <li>Calculate the lengths of both types of pipes which perform fundamental note of 20 Hz.</li> </ol>                                                                                                                                                                                        | roduce a | 3 marks |  |
|            | iii. For two pipes with the same length, one "open" and<br>calculate the ratio of the frequencies of their first over                                                                                                                                                                            |          | 2 marks |  |
| b)         | Consider a note of frequency 440 Hz. If you go down or up one octave<br>the frequency either halves or doubles respectively.                                                                                                                                                                     |          |         |  |
|            | <ul> <li>Calculate the frequency of a note, which is four octave<br/>440 Hz, and decide whether the human ear can still h</li> </ul>                                                                                                                                                             |          | 2 marks |  |
|            | <ul><li>ii. The frequency of the highest note several octaves at<br/>440 Hz which we can still hear is 14080 Hz.</li></ul>                                                                                                                                                                       | oove     |         |  |
|            | 1. Calculate how many octaves it lies above the 4                                                                                                                                                                                                                                                | 40 Hz.   | 1 mark  |  |
|            | 2. The shortest pipe in an organ is 6.14 mm long.                                                                                                                                                                                                                                                |          |         |  |
|            | Decide by using a calculation whether it is an "c<br>"closed pipe", knowing that its fundamental freq<br>14080 Hz.                                                                                                                                                                               |          | 3 marks |  |

| Part A | A |
|--------|---|
|--------|---|

## <u>Given:</u>

speed of sound in air

 $v_{\text{sound}} = 346\,\text{m}\,\text{s}^{-1}$ 


|    | Question 2                                                                                                                                                                                                                                                                                                               |         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|    | Part B Page 2/3                                                                                                                                                                                                                                                                                                          | Marks   |
| a) | Students perform Young's experiment using laser light with wavelength $\lambda$ . The light is incident on a double slit with slit separation <i>a</i> . An interference pattern is observed on a screen located at the distance <i>L</i> from the double slit. The screen is parallel to the plane of the double slits. |         |
|    | i. Show that the positions of the maxima on the screen is given by:<br>$x_k = k \frac{L \lambda}{a}$ , where $k = 0, \pm 1, \pm 2,$<br>State the approximations used.                                                                                                                                                    | 4 marks |
|    | <b>ii.</b> Knowing that the distance between the two 3 <sup>rd</sup> order maxima on the screen is 3.60 cm, $L = 4.00$ m and $\lambda = 546$ nm, calculate the slit separation <i>a</i> (see figure below).                                                                                                              | 2 marks |
|    | a<br>laser beam                                                                                                                                                                                                                                                                                                          |         |
| b) | Using a double slit with $a = 3.64 \times 10^{-4}$ m, the students replace the laser with a source, which emits red light ( $\lambda_1 = 672$ nm) and green light ( $\lambda_2$ ). On the screen there is an overlap of interference patterns. A maximum for green overlaps with the third order maximum for red.        |         |
|    | Determine the wavelength $\lambda_2$ of the green light and the order of the green maximum overlapping the red maximum.                                                                                                                                                                                                  | 4 marks |

| Question 2 |                                                                                                                                                                                                                                                                                                                                      |          |         |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--|
|            | Part B                                                                                                                                                                                                                                                                                                                               | Page 3/3 | Marks   |  |
| c)         | <b>c)</b> Students use another laser and replace the double slit with a diffraction grating with 4000 lines per centimetre. The distance $L = 4.00$ m remains unchanged. The first maximum is observed at a distance 0.871 m from the central maximum on the screen. The diffraction grating formula is $k\lambda = d\sin(\theta_k)$ |          |         |  |
|            | <b>i.</b> Explain the meaning of <i>d</i> and $\theta_k$ in this formula.                                                                                                                                                                                                                                                            |          | 1 mark  |  |
|            | ii. Show that the wavelength of the laser light is 532 nm.                                                                                                                                                                                                                                                                           |          | 4 marks |  |

|                                                      | Part B                                                                     |
|------------------------------------------------------|----------------------------------------------------------------------------|
| <u>Given:</u>                                        |                                                                            |
| wavelength of green light speed of light in a vacuum | 500 nm $\le \lambda \le$ 560 nm<br>$c = 3.00 \times 10^8 \text{ m s}^{-1}$ |

|    |                                                                                                                                                                                                                                    |                                                                              | C             | Question    | 3               |                  |                    |         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------|-------------|-----------------|------------------|--------------------|---------|
|    |                                                                                                                                                                                                                                    |                                                                              |               |             |                 |                  | Page 1/1           | Marks   |
| a) |                                                                                                                                                                                                                                    | quation below is Ei<br>when a photocell is                                   |               |             |                 | •                | otoelectric        |         |
|    |                                                                                                                                                                                                                                    | $hf = W_0$                                                                   | $+ E_{kin}$ . |             |                 |                  |                    |         |
|    | i.                                                                                                                                                                                                                                 | Explain what is me                                                           | ant by the    | e three te  | rms <i>hf</i> , | $W_{0}$ and      | E <sub>kin</sub> . | 3 marks |
|    | ii. Monochromatic light of wavelength 486 nm is used to illuminate<br>the photocell. The photocathode is coated with a thin layer of<br>caesium with a work function of 2.08 eV and has a surface area<br>of 100 mm <sup>2</sup> . |                                                                              |               |             |                 |                  |                    |         |
|    |                                                                                                                                                                                                                                    | The intensity of the photoelectric cell is                                   | -             |             | dent on th      | ne catho         | de of the          |         |
|    |                                                                                                                                                                                                                                    | <b>1.</b> Show that the $4.09 \times 10^{-19}$ J.                            | energy of     | a single p  | photon of       | this ligh        | t is               | 3 marks |
|    |                                                                                                                                                                                                                                    | 2. Calculate the n                                                           | naximum       | kinetic en  | ergy of a       | photoel          | ectron.            | 2 marks |
|    |                                                                                                                                                                                                                                    | 3. Show that the r photocathode e                                            |               | •           |                 |                  | urface of the      | 4 marks |
|    |                                                                                                                                                                                                                                    | 4. Calculate the n photons result                                            |               |             |                 | ming tha         | it 4 % of the      | 4 marks |
| b) |                                                                                                                                                                                                                                    | hydrogen atom sp<br>s like the Balmer se                                     |               | e wavelei   | ngths car       | n be sort        | ed into            |         |
|    | transi<br>table                                                                                                                                                                                                                    | hotons of the Balm<br>tions from states w<br>below shows the va<br>gen atom. | th the qua    | antum nu    | mber <i>n</i> ≥ | :3 to <i>n</i> = | = 2 . The          |         |
|    | Qı                                                                                                                                                                                                                                 | uantum number <i>n</i>                                                       | 1             | 2           | 3               | 4                | 5                  |         |
|    | En                                                                                                                                                                                                                                 | / eV                                                                         | -13.6         | -3.40       | -1.51           | - 0.85           | - 0.54             |         |
|    |                                                                                                                                                                                                                                    | of the Balmer series<br>vavelength 486 nm                                    |               | ns results  | in the en       | nission c        | of a photon        |         |
|    | Betwe                                                                                                                                                                                                                              | en which energy le                                                           | evels does    | s this tran | sition occ      | cur?             |                    | 4 marks |
| L  |                                                                                                                                                                                                                                    |                                                                              |               |             |                 |                  |                    |         |

| <u>Given</u> :             |                                         |
|----------------------------|-----------------------------------------|
| Planck's constant          | $h = 6.63 \times 10^{-34} \text{ J s}$  |
| speed of light in a vacuum | $c = 3.00 \times 10^8 \text{ m s}^{-1}$ |
| elementary charge          | $e = 1.60 \times 10^{-19} C$            |



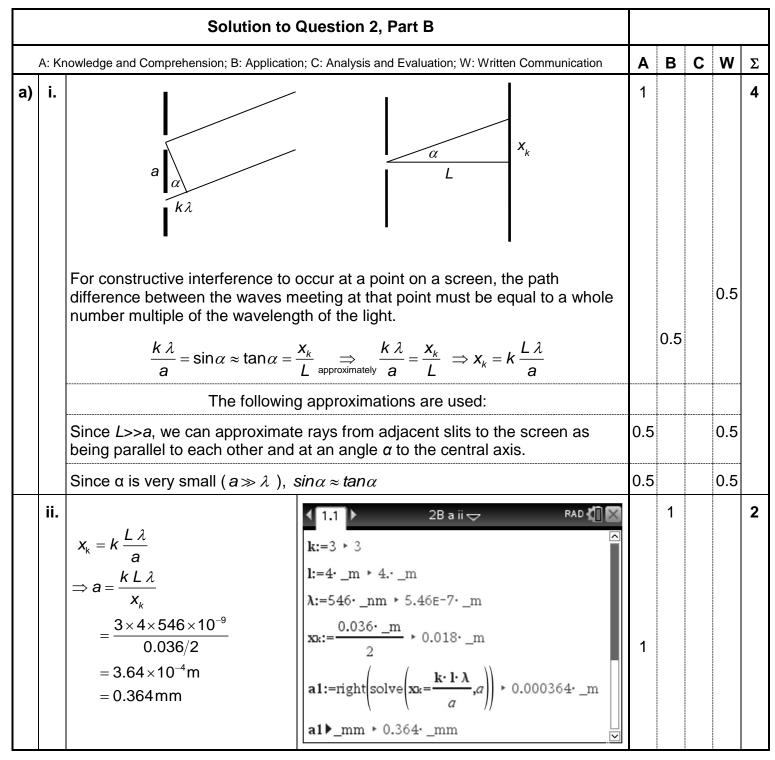
# 3. Sample BAC Written Examination

| Question 4 |                                                                                                                              |            |         |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------|------------|---------|--|--|--|--|
|            |                                                                                                                              | Page 2/2   | Marks   |  |  |  |  |
| b)         | <b>b)</b> One of the fission reactions that uranium may undergo in a nuclear reactor is:                                     |            |         |  |  |  |  |
|            | $^{235}_{92}$ U + $^{1}_{0}$ n $\rightarrow  ^{141}_{56}$ Ba + $^{92}_{36}$ Kr + $3^{1}_{0}$ n                               |            |         |  |  |  |  |
|            | <ul> <li>Explain how a chain reaction is produced, and the role of a<br/>moderator in a nuclear reactor.</li> </ul>          |            |         |  |  |  |  |
|            | ii. Calculate the energy released by this reaction.                                                                          |            | 4 marks |  |  |  |  |
| c)         | c) In a reactor using uranium-235, a variety of fission reactions occur. The average energy released per fission is 210 MeV. |            |         |  |  |  |  |
|            | Calculate the mass of uranium-235 that undergoes fission per run a 2.00 GW power plant assuming an efficiency of 33 %.       | er hour to | 4 marks |  |  |  |  |

|--|

| atomic mass unit                               | $1 \text{ u} = 931.5 \text{ MeV} / c^2 = 1.66 \times 10^{-27} \text{ kg}$ |
|------------------------------------------------|---------------------------------------------------------------------------|
| speed of light in a vacuum                     | $c = 3.00 \times 10^8 \text{ m s}^{-1}$                                   |
| elementary charge                              | $e = 1.60 \times 10^{-19} \text{ C}$                                      |
| mass of the neutron                            | <i>m</i> <sub>n</sub> = 1.008 665 u                                       |
| atomic mass of <sup>92</sup> <sub>36</sub> Kr  | 91.926 156 u                                                              |
| atomic mass of <sup>141</sup> <sub>56</sub> Ba | 140.914 411 u                                                             |
| atomic mass of <sup>235</sup> <sub>92</sub> U  | 235.043 930 u                                                             |
|                                                |                                                                           |

|    | Solution to Question 1, Part A                                                                                                                                                   |       |   | F | ield | s |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|---|------|---|---|
| ,  | A: Knowledge and Comprehension; B: Application; C: Analysis and Evaluation; W: Written Communica                                                                                 | ition | Α | в | С    | W | Σ |
| a) | 🖣 1.1 🕨 1A a 🤝 RAD 🕅 🔀                                                                                                                                                           |       | 2 |   |      |   | 3 |
|    |                                                                                                                                                                                  |       |   |   |      |   |   |
|    | = = 't^2/'r^3                                                                                                                                                                    |       |   |   |      |   |   |
|    | <sup>1</sup> b 1.73 1.51 0.44037                                                                                                                                                 |       |   |   |      |   |   |
|    | <sup>2</sup> c 2.37 2.42 0.43993                                                                                                                                                 |       |   |   |      |   |   |
|    | <sup>3</sup> d 3.33 4.05 0.4442                                                                                                                                                  |       |   |   |      |   |   |
|    | 4 e 4.38 6.1 0.44283                                                                                                                                                             |       |   |   |      |   |   |
|    | <sup>5</sup> f 5.76 9.21 0.44387                                                                                                                                                 |       |   |   |      |   |   |
|    | <sup>6</sup> g 7.01 12.35 0.44277                                                                                                                                                |       |   |   |      |   |   |
|    | <sup>7</sup> h 9.27 18.77 0.44227 💆                                                                                                                                              |       |   |   |      |   |   |
|    | D10                                                                                                                                                                              |       |   |   |      |   |   |
|    | <b>m</b> 2                                                                                                                                                                       |       |   |   |      | 1 |   |
|    | Kepler's 3 <sup>rd</sup> law gives (nearly) the same value of the ratio $\frac{T^2}{r^3}$ for all the planets. (As stated in the question, this ratio needs to be calculated and |       |   |   |      | I |   |
|    | planets. (As stated in the question, this ratio needs to be ballouldted and                                                                                                      |       |   |   |      |   |   |
|    | shown to be constant for only two planets.)                                                                                                                                      |       |   |   |      |   |   |
| b) | $V_{\rm e} = \frac{s}{t} = \frac{2\pi r_{\rm e}}{T_{\rm e}}$                                                                                                                     |       | 2 |   |      |   | 3 |
|    | 6                                                                                                                                                                                |       |   |   |      |   |   |
|    | $=\frac{2\pi (4.38 \times 10^{9})}{6.10 \times 24 \times 3600}=5.22 \times 10^{4} \text{ m s}^{-1}=52.2 \text{ km s}^{-1}$                                                       |       |   | 1 |      |   |   |
| c) | According to Kepler's 3 <sup>rd</sup> Law:                                                                                                                                       |       |   | 1 |      |   | 3 |
| -, |                                                                                                                                                                                  |       |   |   |      |   |   |
|    | $\frac{T_1^2}{r_1^3} = \frac{T_2^2}{r_2^3} \qquad (T = \frac{s}{v} = \frac{2\pi r}{v} \implies T^2 = \frac{4\pi^2 r^2}{v^2})$                                                    |       |   |   |      |   |   |
|    | $\frac{4\pi^2 r_1^2}{r_1^3 v_1^2} = \frac{4\pi^2 r_2^2}{r_2^3 v_2^2} \implies r_1 v_1^2 = r_2 v_2^2 \implies \left(\frac{v_1}{v_2}\right)^2 = \frac{r_2}{r_1}$                   |       |   |   | 2    |   |   |
|    | $\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{r_2}{r_1}}$                                                                                                                           |       |   |   |      |   |   |
|    | Alternative solution:                                                                                                                                                            |       |   |   |      |   |   |
|    | Gravitational force = Centripetal force                                                                                                                                          |       |   |   |      |   |   |
|    | $ F_{\rm G}  =  F_{\rm C}  \Leftrightarrow G \frac{M m}{r^2} = \frac{m v^2}{r} \Rightarrow v^2 = \frac{G M}{r}$                                                                  |       |   |   |      |   |   |
|    | $\Rightarrow \frac{V_1^2}{V_2^2} = \frac{\frac{G}{r_1}}{\frac{G}{r_2}} = \frac{r_2}{r_1} \qquad \Rightarrow \frac{V_1}{V_2} = \sqrt{\frac{r_2}{r_1}}$                            |       |   |   |      |   |   |


|    |     | Solution to Question 1, Part A                                                                                                                                                                                                                                                                                          |   | F | ield | S   |    |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------|-----|----|
| d) |     | Using the equation from part <b>c)</b> , and comparing with planet "e", whose speed is known from part <b>b)</b> , gives:                                                                                                                                                                                               |   |   |      | 0.5 | 3  |
|    |     | $\frac{v_{\rm e}}{v_{\rm x}} = \sqrt{\frac{r_{\rm x}}{r_{\rm e}}} \Longrightarrow r_{\rm x} = r_{\rm e} \left(\frac{v_{\rm e}}{v_{\rm x}}\right)^2$                                                                                                                                                                     |   | 1 |      |     |    |
|    |     | $\Rightarrow r_{x} = 4.38 \times 10^{9} \left(\frac{5.22 \times 10^{4}}{4.13 \times 10^{4}}\right)^{2} \qquad \begin{array}{c} \checkmark 1.1 \end{matrix} \qquad 1A \ d \bigtriangledown \qquad RAD \ \hline \\ ve:=5.22 \cdot 10^{4} \cdot \_m \cdot \_s^{-1} + 52200 \cdot \cdot \_\frac{m}{\_s} \\ \_s \end{array}$ |   | 1 |      |     |    |
|    |     | $\Rightarrow r_{x} = 7.00 \times 10^{9} \text{ m} = 7.00 \times 10^{6} \text{ km} \qquad \qquad$                                                                                                 |   |   |      |     |    |
|    |     | $\mathbf{vx}:=4.13 \cdot 10^4 \cdot \_m \cdot \_s^{-1} * 41300 \cdot \frac{\_m}{s}$                                                                                                                                                                                                                                     |   |   |      |     |    |
|    |     | It is planet "g".<br>$\mathbf{r}:=\operatorname{right}\left(\operatorname{solve}\left(\frac{\mathbf{vx}}{\mathbf{ve}}=\sqrt{\frac{\mathbf{re}}{rx}},rx\right)\right) \models 6.9971\text{E9}\cdot\_\text{m}$                                                                                                            |   |   |      | 0.5 |    |
|    |     | <b>r▶_</b> km ► 6.9971E6•_km                                                                                                                                                                                                                                                                                            |   |   |      |     |    |
| e) | i.  | $E_{\rm tot} = E_{\rm kin} + E_{\rm pot} = \frac{1}{2}mv^2 - G\frac{mM}{r}$                                                                                                                                                                                                                                             |   |   | 1    |     | 3  |
|    |     | Since $F_{\rm G} = F_{\rm C} \Rightarrow G \frac{m M}{r^2} = \frac{m v^2}{r} \Rightarrow v^2 = \frac{G M}{r}$                                                                                                                                                                                                           |   | 2 |      |     |    |
|    |     | $\Rightarrow E_{\text{tot}} = E_{\text{kin}} + E_{\text{pot}} = \frac{G  m  M}{2  r} - G \frac{m  M}{r} = -G \frac{m  M}{2  r}$                                                                                                                                                                                         |   |   |      |     |    |
|    | ii. | $L_{\text{tot}} = -G \frac{1}{2r}$                                                                                                                                                                                                                                                                                      |   | 1 |      |     | 1  |
|    |     | $E_{\text{tot}} = -6.67 \times 10^{-11} \times \frac{0.77 \times 5.97 \times 10^{24} \times 1.77 \times 10^{29}}{2 \times 4.38 \times 10^{9}}$                                                                                                                                                                          |   |   |      |     |    |
|    |     | $E_{\rm tot} = -6.20 \times 10^{33}  {\rm J}$                                                                                                                                                                                                                                                                           |   |   |      |     |    |
|    |     |                                                                                                                                                                                                                                                                                                                         | 4 | 7 | 3    | 2   | 16 |

|    |       | Solution to Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on 1, Part B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | F   | ield | S   |   |
|----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|-----|---|
|    | A: Kr | nowledge and Comprehension; B: Application; C: Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ysis and Evaluation; W: Written Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Α   | В   | С    | W   | Σ |
| a) | i.    | The centripetal force required is supplied<br>by the magnetic field.<br>$F_{\rm m} = F_{\rm C}$ $\Rightarrow Be v = \frac{m_{\rm P} v^2}{R}$ $\Rightarrow R = \frac{m_{\rm P} v}{e B}$                                                                                                                                                                                                                                                                                                                                                                                                          | d<br>1.1 *1B a<br>fL:= $e \cdot v \cdot b + b \cdot e \cdot v$<br>fz:= $\frac{m \cdot v^2}{r} + \frac{m \cdot v^2}{r}$<br>r 1:=right(solve(fL=fz,r)) + $\frac{m \cdot v}{b \cdot e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.5 | 1.5  |     | 3 |
|    | ii.   | The distance travelled during the time $\Delta$<br>half the circumference of a circle having<br>radius <i>R</i> :<br>$v = \frac{\Delta s}{\Delta t} = \frac{\pi R}{\Delta t} \Rightarrow \Delta t = \frac{\pi R}{v}$<br>Inserting <i>R</i> from <b>i.</b> gives $\Delta t = \frac{\pi m_{P}}{e B}$ . Here<br>$\Delta t$ is independent of the speed <i>v</i> .                                                                                                                                                                                                                                  | $\mathbf{r1}:=\operatorname{right}(\operatorname{solve}(\mathbf{f_L}=\mathbf{f_Z},r)) \succ \frac{m \cdot \nu}{b \cdot e}$ $\operatorname{solve}\left(\nu = \frac{\pi \cdot r}{t}, t\right) \succ t = \frac{\pi \cdot r}{\nu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2   |     |      |     | 2 |
| b) | i.    | The potential energy of a charge <i>e</i> in an is $E_{pot} = e U$ .<br>During each gap crossing the potential <i>e</i> Hence, the increase in kinetic energy of $\Delta E_{kin} = e \times 1.00 \times 10^4 \text{ V} = 1.00 \times 10^4 \text{ eV}$ .                                                                                                                                                                                                                                                                                                                                         | energy is converted into kinetic energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5 |     |      | 0.5 | 2 |
|    | ii.   | For the first gap crossing the initial<br>value of the kinetic energy of the<br>proton is $0. \Rightarrow \Delta E_{kin} = E_{kin} - 0 = E_{kin}$<br>$E_{kin} = E_{pot} \Rightarrow \frac{1}{2} m_p v^2 = e U$<br>$\Rightarrow v = \sqrt{\frac{2 e U}{m_p}}$<br>Inserting this formula for v into the<br>equation from a) i. gives<br>$R_1 = \frac{m_p v_1}{e B} = \sqrt{\frac{m_p^2 P}{e^2 B^2} \times \frac{2 e U}{m_p}}$<br>$= \sqrt{\frac{2 m_p U}{e B^2}}$<br>$= \sqrt{\frac{2 \times 1.67 \times 10^{-27} \times 1 \times 10^4}{1.60 \times 10^{-19} \times 1}}$<br>= 0.0144 m = 1.44  cm | $ \begin{array}{c c c c c c c } \hline & 18 \text{ b ii} \bigtriangledown & \mathbb{R} \\ \hline \mathbf{ekin} & = \frac{1}{2} \cdot m \cdot v^2 + \frac{m \cdot v^2}{2} \\ \hline \mathbf{epot} & = e \cdot u + e \cdot u \\ \text{solve}(\mathbf{ekin} = \mathbf{epot}, v) \\ & & v = -\sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ and } \frac{e \cdot u}{m} \ge 0 \text{ or } \\ & v = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ and } \frac{e \cdot u}{m} \ge 0 \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ and } \frac{e \cdot u}{m} \ge 0 \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ and } \frac{e \cdot u}{m} \ge 0 \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ and } \frac{e \cdot u}{m} \ge 0 \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ and } \frac{e \cdot u}{m} \ge 0 \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{v}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{vp}) \\ \hline \mathbf{vp} & = \sqrt{\frac{2 \cdot e \cdot u}{m}} \text{ solve} (\mathbf{ekin} = \mathbf{epot}, \mathbf{vp}) \\ \hline \mathbf{vp} & = \frac{2 $ | 2   | 1   |      |     | 3 |

|    |     | Solution to Question                                                                                                                                                                                                                                                                                                                                                                                                                              | on 1, Part B                                                                                                                                                                                                                                                                                                                                      |     | F   | ields   |    |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|---------|----|
| c) | i.  | Using the equation in <b>a) i</b> :                                                                                                                                                                                                                                                                                                                                                                                                               | <1.1 ► 1B c i <del>\</del>                                                                                                                                                                                                                                                                                                                        |     | 2   |         | 3  |
|    |     | $v_{\text{max}} = \frac{e B R_{\text{max}}}{m_{\text{P}}} \text{ and}$ $E_{\text{kin max}} = \frac{1}{2} m v_{\text{max}}^2 \text{ we get}$ $E_{\text{kin max}} = \frac{1}{2} m_{\text{P}} \left(\frac{eBR_{\text{max}}}{m_{\text{P}}}\right)^2$ $E_{\text{kin max}} = \frac{(1.6 \times 10^{-19} \times 1 \times 0.289)^2}{2 \times 1.67 \times 10^{-27}}$ $= 6.40 \times 10^{-13} \text{ J}$ $= 4.00 \times 10^6 \text{ eV} = 4.00 \text{ MeV}$ | $r_{\max} := 0.289 \cdot \_m \ge 0.289 \cdot \_m$ $v_{m} := right \left( solve \left( r_{\max} = \frac{\_Mp \cdot v_{max}}{\_q \cdot 1 \cdot \_T}, v_{max} \right) \right)$ $\ge 2.7683E7 \cdot \frac{\_m}{\_s}$ $e_{m} := \frac{1}{2} \cdot \_Mp \cdot v_{m}^{2} \ge 6.409E^{-}13 \cdot \_J$ $e_{m} \triangleright \_eV \ge 4.0002E6 \cdot \_eV$ | 1   |     |         |    |
|    | ii. | Dividing the maximum kinetic energy<br>from <b>c</b> ) <b>i.</b> by the energy received<br>during each gap crossing (see <b>b</b> ) <b>i.</b> ,<br>we get the number of gap crossings <i>n</i> .<br>$n = \frac{4.00 \times 10^6 \text{ eV}}{1.00 \times 10^4 \text{ eV}}$ $= 400 \text{ gap crossings,}$ i.e. 200 revolutions                                                                                                                     | ■ 1.1 ■ 1B ci =<br>$e_{m}$ = $e_{V}$ > 4.0002E6 · _ $e_{V}$<br>$e_{1}$ = 1 · 10 <sup>4</sup> · _ $e_{V}$ > 1.6022E - 15 · _ J<br>$n := \frac{e_{m}}{e_{1}}$ > 400.02                                                                                                                                                                              |     |     | 1       | 1  |
|    | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                   | 6.5 | 4.5 | 2.5 0.5 | 14 |

|    |       | Solution to Question 2, Part A                                                                                                                                                                                                                                                                                                                                                   |            |   |   |   |   |
|----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|---|---|---|
|    | A: Kn | nowledge and Comprehension; B: Application; C: Analysis and Evaluation; W: Written Commun                                                                                                                                                                                                                                                                                        | ication A  | в | С | w | Σ |
| a) | i.    | open at both ends closed at one end                                                                                                                                                                                                                                                                                                                                              |            |   |   |   | 4 |
|    |       | fundamental                                                                                                                                                                                                                                                                                                                                                                      | — 1<br>— 1 |   |   |   |   |
|    |       | 1 <sup>st</sup> Overtone                                                                                                                                                                                                                                                                                                                                                         | 1<br>1     |   |   |   |   |
|    |       | (The arrows show the positions of the nodes.)                                                                                                                                                                                                                                                                                                                                    |            |   |   |   |   |
|    | ii.   | The wavelength of a sound with frequency 20 Hz is<br>$c = \lambda f \Rightarrow \lambda = \frac{c}{f} = \frac{346}{20} = 17.3 \text{ m}$                                                                                                                                                                                                                                         |            | 2 |   |   | 3 |
|    |       | The length of an open pipe is half the fundamental wavelength:<br>$L_{open} = 8.65$ m.                                                                                                                                                                                                                                                                                           | 0.5        |   |   |   |   |
|    |       | The length of a closed pipe is a one quarter of the fundamental wavele $L_{closed} = 4.325$ m.                                                                                                                                                                                                                                                                                   | ength:     | 5 |   |   |   |
|    | iii.  | From the sketches in a) i., for the same <i>L</i> , one can see the relation bet<br>the wavelengths for the first overtones for both types of pipes<br>$\frac{\lambda_{\text{open},1}}{\lambda_{\text{closed},1}} = \frac{L}{\frac{4}{3}L} = \frac{3}{4} \text{ and since } f \propto \frac{1}{\lambda} \Rightarrow \frac{f_{\text{open},1}}{f_{\text{closed},1}} = \frac{4}{3}$ | tween      |   | 2 |   | 2 |
|    |       | Alternative solution:                                                                                                                                                                                                                                                                                                                                                            |            |   |   |   |   |
|    |       | You could also get this ratio using the formulae:                                                                                                                                                                                                                                                                                                                                |            |   |   |   |   |
|    |       | $\lambda_{\text{open}, n} = \frac{2L}{n+1}$ and $\lambda_{\text{closed}, n} = \frac{4L}{2n+1}$ , where $n = 0, 1, 2, 3, \dots$                                                                                                                                                                                                                                                   |            |   |   |   |   |
|    |       | When $n = 1$ : $\frac{\lambda_{\text{open},1}}{\lambda_{\text{closed},1}} = \frac{2L}{2} \div \frac{4L}{3} = \frac{3}{4} \implies \frac{f_{\text{open},1}}{f_{\text{closed},1}} = \frac{4}{3} \text{ since } f \propto \frac{1}{\lambda}$                                                                                                                                        |            |   |   |   |   |

|    |     |    | Solution to Question 2, Part A                                                                                                                                                         |   |   |   |   |    |
|----|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|----|
| b) | i.  |    | The frequency of the note has to be divided by 2 four times.<br>$\frac{440Hz}{2^4} = 27.5Hz > 20Hz$ . Hence the human ear can hear this note.                                          |   |   |   |   | 2  |
|    | ii. | 1. | $\frac{14\ 080}{440} = 32 = 2^5$ , where 5 is the number of octaves above 440 Hz.                                                                                                      | 1 |   |   |   | 1  |
|    |     | 2. | The wavelength of the sound with $f = 14\ 080\ \text{Hz}$ is:<br>$\lambda = \frac{c}{f} = \frac{346\ \text{m s}^{-1}}{14\ 080\ \text{s}^{-1}} = 0.02457\ \text{m} = 24.57\ \text{mm}.$ |   | 2 | 1 |   | 3  |
|    |     |    | $\frac{\lambda}{L} = \frac{24.57}{6.14} = 4.$ Since $\lambda = 4L$ , it is a closed pipe.                                                                                              | 8 | 4 | 3 | 0 | 15 |



|    |     | Solution to Question 2, Part B                                                                                                                                                                                                                                                                                                                                                                        |     |     |   |            |    |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|---|------------|----|
| b) |     | $x_{\rm k} = k \frac{L \lambda}{a} \Longrightarrow x_{\rm 3r} = \frac{3 \times 4.00 \times 672 \times 10^{-9}}{3.64 \times 10^{-4}} = 22.15 \rm mm$                                                                                                                                                                                                                                                   | 0.5 |     |   |            | 4  |
|    |     | Because the green maximum must also be at $x_{3r}$ , $\Rightarrow x_{kgreen} = 22.15$ mm<br>As $\lambda_{green} < \lambda_{red}$ it is sufficient to start with the 4 <sup>th</sup> order green maximum:<br>$x_k = k \frac{L \lambda}{a} \Rightarrow \lambda = \frac{x_k a}{kL} \Rightarrow \lambda = \frac{22.15 \times 10^{-3} \times 3.64 \times 10^{-4}}{4 \times 4.00} = 504 \times 10^{-7}$ mm. | 0.5 | 1.5 | 1 | 0.5        |    |
|    |     | This wavelength $504 \times 10^{-7}$ mm is in the range given for green light.<br>Hence the 3 <sup>rd</sup> red maximum overlaps the 4 <sup>th</sup> green maximum.<br>Using $k \ge 5$ gives wavelengths lower than the range given for green light.                                                                                                                                                  |     |     |   |            |    |
|    |     | 1.1 ▶ 2B b      k:=4 ▶ 4     l:=4 • _m ▶ 4. • _m                                                                                                                                                                                                                                                                                                                                                      |     |     |   |            |    |
|    |     | $\mathbf{a}:=3.64 \cdot 10^{-4} \cdot \_m \models 0.000364 \cdot \_m$ $\mathbf{x}_{r_3}:=\frac{3 \cdot \mathbf{l} \cdot 672 \cdot \_nm}{\mathbf{a}} \models 0.022154 \cdot \_m$                                                                                                                                                                                                                       |     |     |   |            |    |
|    |     | $\lambda := \operatorname{right}(\operatorname{solve}(x_{r_3} = k \cdot l \cdot \lambda_{g_4} / a_* \lambda_{g_4}))$<br>$\succ 5.04 \in -7 \cdot \_m$<br>$\lambda \blacktriangleright \_nm \succ 504. \cdot \_nm$                                                                                                                                                                                     |     |     |   |            |    |
| c) | i.  | $d = \frac{1}{\text{number of lines per metre}} = \text{the grating constant}$<br>$\theta_k$ is the angle between the light rays forming the central maximum and the                                                                                                                                                                                                                                  |     |     |   | 0.5<br>0.5 | 1  |
|    | ii. | light rays forming the k <sup>th</sup> order maximum.<br>$\tan \theta_1 = \frac{X_1}{L} \Rightarrow \theta_1 = \tan^{-1} \frac{X_1}{L} = \tan^{-1} \frac{0.871}{4.00}$                                                                                                                                                                                                                                |     | 2   |   |            | 4  |
|    |     | $d = \frac{1}{4000 \times 10^2} \mathrm{m}^{-1}$                                                                                                                                                                                                                                                                                                                                                      |     | 1   |   |            |    |
|    |     | $\lambda = \frac{d\sin\theta}{k} = \frac{\frac{1}{4000 \times 10^2} \times \sin\left(\tan^{-1}\frac{0.871}{4.00}\right)}{1} = 5.32 \times 10^{-7} \mathrm{m}$                                                                                                                                                                                                                                         |     |     | 1 |            |    |
|    |     |                                                                                                                                                                                                                                                                                                                                                                                                       | 4   | 6   | 2 | 3          | 15 |

|    |     |                        | Solution to Question 3                                                                                                                                                                                                                                                                                                                                                        |     |   |   |     |   |
|----|-----|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|-----|---|
|    | Α   | в                      | С                                                                                                                                                                                                                                                                                                                                                                             | W   | Σ |   |     |   |
| a) | i.  | W <sub>0</sub><br>fror | the energy of a photon incident on the photoelectric cell<br>the work function, i.e. the minimum energy needed to release an electron<br>the surface of the photocathode<br>the maximum kinetic energy of the released electron                                                                                                                                               | 1.5 |   |   | 1.5 | 3 |
|    | ii. | 1.                     | $E_{photon} = h f = \frac{hc}{\lambda}$ $= \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{486 \times 10^{-9}}$ $= 4.09 \times 10^{-19} J$ $a:= 100 \cdot mm^2 * 0.0001 \cdot m^2$ $f:= right(solve(_c=\lambda \cdot f,f)) * 6.1686E14 \cdot Hz$ $e_{ph}:= h \cdot f * 4.0873E-19 \cdot J$                                                                                | 3   |   |   |     | 3 |
|    |     | 2.                     | Part of the energy of the photon is used<br>to set the electron free. The remainder of<br>the photon's energy is the kinetic energy<br>of the free electron.<br>$E_{\text{kinmax}} = E_{\text{photon}} - W = hf - W$ $E_{\text{kinmax}} = 4.09 \times 10^{-19} - 2.08 (1.60 \times 10^{-19})$ $= 7.62 \times 10^{-20} \text{ J}  (= 0.476 \text{ eV})$                        | 1   | 1 |   |     | 2 |
|    |     |                        | <i>n</i> is the number of photons incident<br>on the photocathode per second.<br>$P = n E_{photon} \Rightarrow n = \frac{P}{E_{photon}}$ $= \frac{1 \times 10^{-1} \times 100 \times 10^{-6}}{4.09 \times 10^{-19}}$ $= 2.44 \times 10^{13} \text{ s}^{-1}$                                                                                                                   | 1   | 1 | 2 |     | 4 |
|    |     | 4.                     | Only 4% of the incident photons release<br>an electron.<br>n' is the number of photons which<br>actually cause photoemission per second.<br>$n' = \frac{4}{100} \times 2.44 \times 10^{13} \text{ s}^{-1} = 9.76 \times 10^{11} \text{ s}^{-1}.$<br>$l = \frac{Q}{t} = e n' = \frac{1.60 \times 10^{-19} \times 9.76 \times 10^{11}}{1}$<br>$= 1.56 \times 10^{-7} \text{ A}$ |     | 2 | 2 |     | 4 |

| b) | In a) ii. 2. the energy of a photon with wavelength 486 nm is given as<br>$E_{\text{photon}} = 4.09 \times 10^{-19} \text{ J} = \frac{4.09 \times 10^{-19}}{1.60 \times 10^{-19}} \text{ eV} \approx 2.56 \text{ eV}.$ $\Delta E = -3.40 - E_{\text{n}} = -2.56$ $\Rightarrow E_{\text{n}} = -3.40 + 2.56 = -0.84 \text{ eV} \Rightarrow n = 4$ Hence the transition is from level 4 to level 2. |     | 2<br>1.5 |   | 0.5 | 4  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|---|-----|----|
|    |                                                                                                                                                                                                                                                                                                                                                                                                  | 6.5 | 7.5      | 4 | 2   | 20 |

|    |       | Solution to Question 4                                                                                                                                                                                                                                                                                                                           |     |     |     |     |   |
|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|---|
|    | A: Kn | Α                                                                                                                                                                                                                                                                                                                                                | В   | С   | W   | Σ   |   |
| a) | i.    | The atoms of each isotope of an element have the same number of protons (i.e. the same atomic number) but have a different number of neutrons (i.e. a different mass number).                                                                                                                                                                    | 1   |     |     |     | 1 |
|    | ii.   | $^{99}_{43}$ Tc has 43 protons and 99 - 43 = 56 neutrons.                                                                                                                                                                                                                                                                                        | 0.5 |     |     | 0.5 | 1 |
|    | iii.  | ${}^{99}_{43}\text{Tc} \rightarrow {}^{99}_{44}\text{Ru} + {}^{0}_{-1}\text{e} + \left( {}^{0-}_{0}\nu \right) = {}^{99}_{44}\text{Ru} + \beta^{-} + \left( {}^{0-}_{0}\nu \right). \text{ It is }\beta^{-} \text{ decay.}$                                                                                                                      | 1   | 1   |     |     | 2 |
|    |       | (The anti-neutrino need not be given by students.)                                                                                                                                                                                                                                                                                               |     |     |     |     |   |
|    | iv.   | The half- life of a radioactive isotope is the time taken for the number of radioactive nuclei $N$ to fall to half of the original value $N_0$ .                                                                                                                                                                                                 | 0.5 |     |     | 0.5 | 1 |
|    | v.    | The graph starts at time $t = 0$ with an activity of 4000 Bq and falls to 1000 Bq after about 12 h. So the half-life is 6 h (approximately).                                                                                                                                                                                                     |     | 0.5 |     | 0.5 | 1 |
|    |       | (Other points of the graph may be chosen.)                                                                                                                                                                                                                                                                                                       |     |     |     |     |   |
|    | vi.   | $\frac{1}{2}N_0 = N_0 \ e^{-\lambda T_{1/2}} \Longrightarrow \frac{1}{2} = e^{-\lambda T_{1/2}} \Longrightarrow \ln \frac{1}{2} = -\lambda \ T_{1/2} \Longrightarrow -\ln 2 = -\lambda \ T_{1/2} \Longrightarrow T_{1/2} = \frac{\ln 2}{\lambda}$                                                                                                |     | 2   |     |     | 2 |
| b) | i.    | A chain reaction occurs when at least one neutron from each fission reaction causes further fission to produce more fission neutrons, so that the fission reaction is self-sustaining.                                                                                                                                                           | 1   |     |     | 0.5 | 4 |
|    |       | The neutrons released by the fission of <sup>235</sup> U are fast neutrons and must be slowed down in order to cause further fission in <sup>235</sup> U which is only fissionable by slow neutrons. Moderators e.g. heavy water or graphite, slow down the fast neutrons to speeds which allow them to cause fission of <sup>235</sup> U atoms. |     | 1.5 | 0.5 | 0.5 |   |
|    | ii.   | Mass of the reactants - Mass of the products = $\Delta m$<br>$[m\binom{235}{92}U) - 92m_e + m_n] - [m\binom{141}{56}Ba) - 56m_e + m\binom{92}{36}Kr) - 36m_e + 3m_n] = \Delta m$<br>(If the student explains that the total number of electrons does not change, it is not necessary to mention them in the above equation.)                     |     | 2   |     |     | 4 |
|    |       | $\Delta m = m \binom{235}{92} \text{U} - m \binom{141}{56} \text{Ba} - m \binom{92}{36} \text{Kr} - 2m_n$<br>$\Delta m = 235.043930 - 140.914411 - 91.926156 - 2(1.008665)$<br>$\Delta m = 0.186033 \text{ u}$                                                                                                                                   | 1   |     |     |     |   |
|    |       | $\Delta m = 0.186033 \times 931.5  \frac{\text{MeV}}{\text{c}^2} = 173.3 \frac{\text{MeV}}{\text{c}^2}$                                                                                                                                                                                                                                          | 1   |     |     |     |   |
|    |       | $\Delta E = \Delta mc^2 = 173.3 \text{MeV} = E_{\text{fission}}$                                                                                                                                                                                                                                                                                 |     |     |     |     |   |

г

| c) | $2 \text{ GW} = 2 \frac{\text{GJ}}{\text{s}}$<br>= 2×3600 GJ per hour .<br>= 7.20×10 <sup>12</sup> J per hour<br>The number of fission reactions needed<br>per hour, <i>n</i> , (taking into account the<br>efficiency), is:<br>$n = \frac{7.2 \times 10^{12}}{E_{\text{fission}} \times 0.33}$ $= \frac{7.2 \times 10^{12}}{210 \times 10^6 \times 1.6 \times 10^{-19} \times 0.33} \cdot 6.49 \times 10^{23} \text{ fissions per hour}$ The mass needed per fission reaction<br>is: $m_1 = 235 \text{ u} = 235 \times 1.66 \times 10^{-27} \text{ kg}$ $= 3.90 \times 10^{-25} \text{ kg}$ The total mass needed per1 hour:<br>$m = m_1 \times n = 3.90 \times 10^{-25} \times 6.49 \times 10^{23}$ $= 0.253 \text{ kg per hour.}$ | I.1 | 1 |   | 1   |     | 4  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|-----|-----|----|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 7 | 7 | 3.5 | 2.5 | 20 |

٦

## 6. Excel Table to help checking marks

| EE: BAC Physics |                                |             |                            |                          |      |            |                                |             |                            |                          |      |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
|-----------------|--------------------------------|-------------|----------------------------|--------------------------|------|------------|--------------------------------|-------------|----------------------------|--------------------------|------|--|------------|--------------------------------|-------------|----------------------------|--------------------------|------------|-------------|--------------------------------|-------------|----------------------------|--------------------------|------|
| Question 1      | Knowledge and<br>Comprehension | Application | Analysis and<br>Evaluation | Written<br>Communication | Σ    | Question 2 | Knowledge and<br>Comprehension | Application | Analysis and<br>Evaluation | Written<br>Communication | Σ    |  | Question 3 | Knowledge and<br>Comprehension | Application | Analysis and<br>Evaluation | Written<br>Communication | Σ          | Question 4  | Knowledge and<br>Comprehension | Application | Analysis and<br>Evaluation | Written<br>Communication | Σ    |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          | 0,0        |             |                                |             |                            |                          | 0,0  |
|                 |                                |             |                            |                          |      |            |                                |             |                            |                          |      |  | Sum:       | 0,0                            | 0,0         | 0,0                        | 0,0                      | 0,0        | Sum:        | 0,0                            | 0,0         | 0,0                        | 0,0                      | 0,0  |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  | %:         | 0,0                            | 0,0         | 0,0                        | 0,0                      |            | %:          | 0,0                            | 0,0         | 0,0                        | 0,0                      |      |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  | Target:    | 7,0                            | 7,0         | 4,0                        | 2,0                      | 20,0       | Target:     | 7,0                            | 7,0         | 4,0                        | 2,0                      | 20,0 |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  | The fields | marke                          | ed in y     | /ellow                     | can b                    | e filled i | n, all othe | rs are p                       | rotect      | ted.                       |                          |      |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  | The Sums   | are n                          | narke       | d in di                    | ifferent                 | colors:    |             | greer                          | n:          | ok                         |                          |      |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          |            |             | orang                          | je:         | withi                      | n toler                  | ance |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          |            |             | red:                           |             | not a                      | llowed                   | ł    |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
|                 |                                |             |                            |                          | 0,0  |            |                                |             |                            |                          | 0,0  |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
| Sum A:          | 0,0                            | 0,0         | 0,0                        | 0,0                      | 0,0  | Sum A:     | 0,0                            | 0,0         | 0,0                        | 0,0                      | 0,0  |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
| Sum B:          | 0,0                            | 0,0         | 0,0                        | 0,0                      | 0,0  | Sum B:     | 0,0                            | 0,0         | 0,0                        | 0,0                      | 0,0  |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
| Sum:            | 0,0                            | 0,0         | 0,0                        | 0,0                      | 0,0  | Sum:       | 0,0                            | 0,0         | 0,0                        | 0,0                      | 0,0  |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
| %:              | 0,0                            | 0,0         | 0,0                        | 0,0                      |      | %:         | 0,0                            | 0,0         | 0,0                        | 0,0                      |      |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |
| Target:         | 11,0                           | 11,0        | 5,0                        | 3,0                      | 30,0 | Target:    | 11,0                           | 11,0        | 5,0                        | 3,0                      | 30,0 |  |            |                                |             |                            |                          |            |             |                                |             |                            |                          |      |