

Neues Notensystem S6/S7 Mathematik (3P und 5P)

Die folgenden Beispiele illustrieren die im beiliegenden Dokument "Matrizen Leitfaden Mathematik" beschriebenen Prozeduren. Es gilt zu beachten, dass die Vorgehensweise die gleiche für den 3P- und den 5P-Mathematikkurs. Es wird empfohlen, den Leitfaden zuerst zu lesen.

1. GENERISCHE MATRIZEN

Die ursprünglichen Excel-Tabellen für diese Matrizen stehen zur Verwendung zur Verfügung. Bitte beachten Sie die Mitteilungen des Mathematikinspektors.

1.1. Generische Matrix MA 3P

EUROPÄISCHES ABITUR - Generische MA 3P Matrix Bewertungsschema für											
Teilbereich	Frage	Lernziele (auf den Lehrplan bezogen)	Be		igssc e Auf		für				
			Wissen und Verständnis	Methoden	Problemlösen	Interpretation u. Verknüpfung	Σ				
Teil A ohne Rechner											
Analysis	A1						0,0				
Analysis	A2						0,0				
Analysis	A3						0,0 0,0				
Analysis	A4						0,0				
Analysis	A5						0,0				
Wahrscheinlickke it	A6						0,0				
Wahrscheinlichke it	A7						0,0				
Statistik	A8						0,0				
		S	0,0	0,0		0,0	0,0				
		%	0,0	0,0		0,0					
		Richtlinie:		18,0			40,0				
		%	30,0	45,0	20,0	5,0					
		Toleranz (in Punkten):	3,0	4,0	2,0	2,0					

Die gelb markierten Felder können ausgefüllt werden, alle anderen sind gesperrt.

Die Summen sind in verschiedenen Farben markiert; grün: ok

orange: in der Toleranz
rot: unz ulässig

Für jede einzelne Frage des B-Teils (B1, B2,...) gibt es eine grössere Toleranz beim Verteilen der Noten; jedoch muss die Gesamtgewichtung der Noten für den ganzen B-Teil (mit Rechner) berücksichtigt werden.

		Teil B Mit Rechner					
		Tell B Mit Rechner					
B1	B1a						0,0
Analysis	B1b						0,0
Gonau 3 Toilfragon	B1c						0,0
		S	0,0	0,0	0,0	0,0	0,0
		%	0,0	0,0	0,0	0,0	
		Richtlinie:	3,0	4,5	2,0	0,5	10,
		%	30,0	45,0	,	5,0	
		Toleranz (in Punkten):	3,0	4,0	2,0	2,0	
B2	B2a						0,
Analysis	B2b						0,
•	B2c						0,
Mindostons 4 Toilfragon	B2d						0,
Höchstons 5 Toilfragon	(B2e)						0,
		S	0,0	0,0	0,0	0,0	0,
		%	0,0	0,0	0,0	0,0	
		Richtlinie:	4,5	6,8	3,0	0,8	15,
		%	30,0	45,0	20,0	5,0	
		Toleranz (in Punkten):	3,0	4,0	2,0	2,0	
B3	B3a						0,0
Wahrscheinlichke	B3b						0,
	B3c						0,
Minidostons 4 Toilfragon	B3d						0,
Höchstens 5 Teilfragen	(B3e)						0,
		S	0,0	0,0	0,0	0,0	0,
		%	0,0	0,0	0,0	0,0	
		Richtlinie:	4,5	6,8	3,0	0,8	15,
		%	30,0	45,0	20,0	5,0	
		Toleranz (in Punkten):	3,0	4,0	2,0	2,0	
B4 (and B5)	B4a						0,0
Statistik	B4b						0,0
blooders from Pr. 1	B4c						0,0
Wonn koino Frago B5, dann mws B4 boinhalton	B4d or B5a						0,0
Mindostons 5 Toilfragon	B4e or B5b						0,0
Hächstons 6 Toilfragon	(B4f) or B5c						0,0
		S	0,0	0,0	0,0	0,0	0,
		%	0,0	0,0	0,0	0,0	
		Richtlinie:	6,0	9,0	4,0	1,0	20,0
		%	30,0	45,0	20,0	5,0	
		Toleranz (in Punkten):	3,0	4,0	2,0	2,0	

- 6							
		Total Teil B mit Rechner					
		S	0,0	0,0	0,0	0,0	0,0
ı		%	0,0	0,0	0,0	0,0	
ı		Richtlinie:	18,0	27,0	12,0	3,0	60,0
		%	30,0	45,0	20,0	5,0	
ĺ		Toleranz (in Punkten):	3,0	4,0	2,0	2,0	
-							

Total A and B									
		S	0,0	0,0	0,0	0,0	0,0		
		%	0,0	0,0	0,0	0,0			
		Guideline:	30,0	45,0	20,0	5,0	100,0		
		Tolerance (Points):	4,0	5,0	3,0	2,0			

1.2. Generische Matrix MA 5P

	EUROPÄISCHES ABITUR- Generische MA-5P Matrix										
Teilbereich	Frage	Lernziele (auf den Lehrplan bezogen)	Bev			chem fgabe					
			Wissen und Verständnis	Methoden	Problemlösen	Interpretation u. Verknüpfung	Σ				
		Teil A ohne Rechner									
Analysis	A1						0,0				
Geometrie	A2						0,0				
Wahrscheinlichkeit	А3						0,0				
Folgen	A4						0,0				
Komplexe Zahlen	A5						0,0				
Analysis oder Geometrie oder Wahrscheinlichkeit	A6						0,0				
Analysis oder Geometrie oder Wahrscheinlichkeit	A7						0,0				
		Total ohne Rechner									
		S S	0.0	0,0	0,0	0,0	0.0				
		%									
		Richtlinie:		12,0	9,0	1,5	30,0				
		% Toleranz (in Punkten):	25,0 1,0		30,0	5,0 1,0					

		Teil B mit Rechner					
B1	а						0,0
Analysis	b						0,0
	С						0,0
Minimum 4 Teilfragen	d						0,0
	е						0,0
	f						0,0
	g						0,0
Höchstens 8 Teilfragen							0,0
		S	0,0			0,0	0,0
		%	0,0	0,0		0,0	
		Richtlinie:	5,0				20,0
		%		40,0	30,0	5,0	
		Toleranz (in Punkten):	2,0	4,0	3,0	1,0	
B2	а						0,0
Geometrie	b						0,0
	С						0,0
Minimum 4 Teilfragen	d						0,0
	е						0,0
	f						0,0
	g						0,0
Höchstens 8 Teilfragen							0,0
		S	0,0			0,0	0,0
		%	0,0	0,0		0,0	
		Richtlinie:	5,0				20,0
		%			30,0		
		Toleranz (in Punkten):	2,0	4,0	3,0	1,0	

Do.	_						
B3	а						0,0
Wahrscheinlichkeit	b						0,0
	С						0,0
Mindestens 4 Teilfragen	d						0,0
	е						0,0
	f						0,0
	g						0,0
Höchstens 8 Teilfargen	h						0,0
		S	0,0	0,0	0,0	0,0	0,0
		%	0,0	0,0	0,0	0,0	
		Richtlinie:	5,0	8,0	6,0	1,0	20,0
		%	25,0	40,0		5,0	
		Toleranz (in Punkten):	2,0	4,0	3,0	1,0	
B4 oder B4 und B5	B4a						0,0
Folgen	B4b						0,0
undłoder	B4c						0,0
Komplexe Zahlen	B4d od. B5a						0,0
	B4e od. B5b						0,0
	B4f od. B5c						0,0
							0,0
							0,0
		S	0,0	0,0	0,0	0,0	0,0
		%	0,0		0,0	0,0	
		Richtlinie:	2,5			0,5	10,0
				40,0		5,0	
		Toleranz (in Punkten):	2,0		3,0	1,0	
		(.,.	5,0	,,•	

Total mit Rechner									
	S	0,0	0,0	0,0	0,0	0,0			
	%	0,0			0,0				
	Richtlinie:	17,5	28,0	21,0	3,5	70,0			
	%	25,0	40,0	30,0	5,0				
	Toleranz (in Punkten):	2,0	4,0	3,0	1,0				

	% 0,0 0,0 0,0 0,0 0,0 Richtlinie: 25,0 40,0 30,0 5,0 100					
	S	0,0	0,0	0,0	0,0	0,0
	%	0,0	0,0	0,0	0,0	
	Richtlinie:	25,0	40,0	30,0	5,0	100,0
	Toleranz (in Punkten):	3,0	5,0	4,0	2,0	

2. MATRIZEN DER SCHRIFTLICHEN ABITURPRÜFUNGEN

Um die im beiliegenden Dokument "Matrizen Leitfaden Mathematik "beschriebenen Verfahren zu illustrieren, verwenden diese Matrizen die Abiturarbeiten von 2019.

2.1. Matrix der schriftlichen Abiturprüfung MA 3P (Abiturprüfung vom 11. Juni 2019)

t A6	Teil A ohne Rechner Eine Exponentialgleichung lösen Die Gleichung einer Tangente bestimmen Ein mögliches Schaubild erstellen Eine Stammfunktion bestimmen Einen Flächeninhalt berechnen Eine Wahrscheinlichkeit bestimmen Bestimmen einer Wahrsch./Binomalverteilung	0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	Wertur dies Wethoden 2,0 2,0 2,0 3,0 2,0 2,0 2,0	Problemiösen Problemiösen 2,0		Σ 5,0 5,0 5,0
Analysis A2 Analysis A3 Analysis A4 Analysis A5 Wahrscheinlickkei t Wahrscheinlichke it A7	Eine Exponentialgleichung lösen Die Gleichung einer Tangente bestimmen Ein mögliches Schaubild erstellen Eine Stammfunktion bestimmen Einen Flächeninhalt berechnen Eine Wahrscheinlichkeit bestimmen Bestimmen einer Wahrsch./Binomalverteilung	3,0 1,0 2,0 1,0 2,0 2,0	2,0 2,0 2,0 3,0 2,0	2,0 1,0 1,0	Interpretation und Verknüpfen	5,0 5,0 5,0 5,0
Analysis A2 Analysis A3 Analysis A4 Analysis A5 Wahrscheinlickkei t Wahrscheinlichke it A7	Eine Exponentialgleichung lösen Die Gleichung einer Tangente bestimmen Ein mögliches Schaubild erstellen Eine Stammfunktion bestimmen Einen Flächeninhalt berechnen Eine Wahrscheinlichkeit bestimmen Bestimmen einer Wahrsch./Binomalverteilung	1,0 2,0 1,0 2,0 2,0	2,0 2,0 3,0 2,0	1,0 1,0		5,0 5,0
Analysis A2 Analysis A3 Analysis A4 Analysis A5 Wahrscheinlickkei t Wahrscheinlichke it A7	Die Gleichung einer Tangente bestimmen Ein mögliches Schaubild erstellen Eine Stammfunktion bestimmen Einen Flächeninhalt berechnen Eine Wahrscheinlichkeit bestimmen Bestimmen einer Wahrsch./Binomalverteilung	1,0 2,0 1,0 2,0 2,0	2,0 2,0 3,0 2,0	1,0 1,0		5,0 5,0
Analysis A3 Analysis A4 Analysis A5 Wahrscheinlickkei t A6 Wahrscheinlichke it A7	Ein mögliches Schaubild erstellen Eine Stammfunktion bestimmen Einen Flächeninhalt berechnen Eine Wahrscheinlichkeit bestimmen Bestimmen einer Wahrsch./Binomalverteilung	2,0 1,0 2,0 2,0	2,0 3,0 2,0	1,0 1,0		5,0 5,0
Analysis A4 Analysis A5 Wahrscheinlickkei t Wahrscheinlichke it A6	Ein mögliches Schaubild erstellen Eine Stammfunktion bestimmen Einen Flächeninhalt berechnen Eine Wahrscheinlichkeit bestimmen Bestimmen einer Wahrsch./Binomalverteilung	1,0 2,0 2,0	3,0 2,0	1,0		5,0
Analysis A5 Wahrscheinlickkei t A6 Wahrscheinlichke it A7	Einen Flächeninhalt berechnen Eine Wahrscheinlichkeit bestimmen Bestimmen einer Wahrsch./Binomalverteilung	2,0	2,0			E 0
Wahrscheinlickkei t A6 Wahrscheinlichke it A7	Eine Wahrscheinlichkeit bestimmen Bestimmen einer Wahrsch./Binomalverteilung	2,0		1,0		
t A6 Wahrscheinlichke A7	Bestimmen einer Wahrsch./Binomalverteilung		2.0			5,0
it A7	Wahrsch./Binomalverteilung		2,0	1,0		5,0
Statistik A8		2,0	3,0			5,0
	Median, Quartile bestimmen-in Boxplot darstellen	2,0	3,0			5,0
	S	15,0	19,0	6,0	0,0	40,0
	%	37,5	47,5	15,0	0,0	
	Richtlinie:	12,0	18,0		2,0	40,0
		30,0		20,0	5,0	
	Toleranz (in Punkten):	3,0	4,0	2,0	2,0	
,	Teil B Mit Rechner					
B1 B1a	Graphen skizzieren-Koordinate von Schnittpunkten	2,0	2,0			4,0
Analysis B1b	Inhalt einer Fläche zw. Graphen berechnen	1,0				2,0
Genau3 Teilfragen B1C	x-Koord, des Fanktes best, wo Tangente in zu Gerade	0,0				4,0
	S S	_			0,0	10,0
	%			20,0		
	Richtlinie:	-				10,0
		30.0				
	Toleranz (in Punkten):	3,0			_	
B2 B2a	Exponentialfunktion- Werte bestimmen	1,0	1,0			2,0
Analysis B2b	Schaubild zeichnen	1,0				3 (
B2c	Grenzwert einer Funktion errechnen und interpretieren		2,0	1,0	2,0	3 (
Mindostons 4 Toilfragon B2d	Eine Exponentialgleichung lösen	2,0	1,0		2,0	3,0 3,0 3,0
. 524		1,0				4,0
Höchstons 5 Toilfragon (B2e)	Maximum der Wachtumsrate bestimmen				2,0	15,0
Hächrtonr 5 Toilfragon (B2e	Maximum der Wachtumsrate bestimmen S	5.0				
Hächrton: 5 Toilfragon (B28	Maximum der Wachtumsrate bestimmen S %			13.3	13.3	
Hächrtons 5 Toilfragon (B2e	S %	33,3	40,0			15.0
Höchrtons 5 Toilfragon (B2e	S % Richtlinie:	33,3	40,0 6,8	3,0	0,8	15,0

B3	B3a	Bedingte Wahrscheinl, rechnen (Norma	alverteilung)		2,0	1,0		3,0
Vahrscheinlichke	B3b	Bedingte Wahrscheinlichkeit erre	chnen		1,0	2,0		3,0
	B3c	idem				1,0	2,0	3,0
Minidostons 4 Toilfragon	B3d	Wahrscheinlichkeit bestimmen (Binomia	alverteilung)	2,0	1,0			3,0
Höchstons 5 Toilfragon	(B3e)	idem		1,0	2,0			3,0
			S	3,0	6,0	4,0	2,0	15,0
			%	20,0	40,0	26,7	13,3	
			Richtlinie:	4,5	6,8	3,0	0,8	15,
			%	30,0	45,0	20,0	5,0	
		Toleranz	(in Punkten):	3,0	4,0	2,0	2,0	
B4 (and B5)	B4a	otreddiagramm dha ochadbila zelchne	птехроп.	2,0	3,0			5,
Statistik	В4ь	Wert schätzen		1,0	1,0			2,
	B4c	Exponentialgleichung lösen			2,0	1,0		3,0
Wonn koino Frago B5, dann		Exponentielle Regression bestin	nmen		4.0			4,0
murs B4 boinhalton				4.0		4.0		
Mindortons 5 Toilfragon		Jährliche Wachtumsrate analysie	eren	1,0	1,0	1,0	4.0	3,0
Höchstens 6 Teilfragen	DE.	Wert schätzen und Ergebnisse		4.0	44.0	2,0	1,0	3,0
			S	4,0	11,0	4,0	1,0	20,
			%	20,0	55,0	20,0	5,0	-00
			Richtlinie:	6,0	9,0	4,0	1,0	20,
		T-1	<u>%</u>	30,0	45,0	20,0	5,0	
		Toleranz	(in Punkten):	3,0	4,0	2,0	2,0	
	<u> </u>	T-4-1 T-3 D 4 D b						
		Total Teil B mit Rechn		0.0	0.0	0.0	0.0	0.0
			S	0,0	0,0	0,0	0,0	U,t
					0,0	0,0	0,0	60.0
			Richtlinie:	18,0	27,0		3,0	60,0
		Talaran	(in Dunkton):	30,0	45,0	_	5,0	
		Toleranz	(in Punkten):	3,0	4,0	2,0	2,0	
	Í Í							
		Total						
			S	30,0	47,0	18,0	5,0	100,
			%	30,0	47,0	18,0	5,0	
			Richtlinie:	30,0	45,0			100,0
			%	_	45,0	20,0	5,0	
		Toleranz	(in Punkten):	4,0	5,0	3,0	2,0	
ı		1 1						
Die ge	lb markierte	n Felder können ausgefüllt werd		ren si	ind ge	sperrt		
		grün: ok						
Die Su	mmen sind	n verschiedenen orange:	in der Tolera	nz				
		Farben markiert: unzuläs	sig					
	_	einzelne Frage des B-Teils (B1, B2			_			
	_	Toleranz beim Verteilen der Not			e			
	Gesamtg	ewichtung der Noten für den gar	nzen B-Teil (n	nit				
	Gesamtg							

2.2. Matrix der schriftlichen Abiturprüfung MA 5P (Abiturprüfung vom 11. Juni 2019)

EUF	ROPÄISC	CHES ABITUR- Matrix der schriftlichen Prü	ifung	MA	5P		
Teilbereich	Frage	Lernziele (auf den Lehrplan bezogen)	Bev			chema gabe	a für
			Wissen und Verständnis	Methoden	Problemlösung	Interpretation u. Verknüpfung	Σ
		Teil A ohne Rechner					
Analysis	A1	Den Begriff einer Stammfunktion verstehen, $P(x)IQ(x)$ wobei $P(x)$ und $Q(x)$ Polynomfunktionen vom Grad 2 oder wenigersind	1,0	1,0	2,0		4,0
Geometrie	A2	Dio gogonzoitigo Lagoboziohung bortimmon Gorado/Kugol	1,0	3,0	0,0		4,0
Wahrscheinlichke it	A3	Baumdiagrammo van bodington Eroignizzon orztollon (Ziohon ahno Zurücklogon)	1,0	2,0	2,0		5,0
Folgen	A4	Don Gronzwort oiner Falqo borochnon awqohond van oiner rokurriv dofinierton Falqo in oinfachon Fällon	1,0	2,0	1,0		4,0
Komplexe Zahlen	A5	Botraq und Arqumontoiner Pradukter ader Quationten van zuei kamplexen Zahlen bertimmen	2,0	1,0	1,0		4,0
Analysis ador Goamotrio ador Wahrschoinlichkoit	A6	Charakteristische Merkmale einer Funktion anhand des Graphen des Ableitungsfunktion bestimmen: Tangente in diesem Punkt		1,0	2,0	1,0	4,0
Analysis ador Goamotrio ador Wahrschoinlichkoit	A7	Dio gogonzoitigo Lagoboziohung bortimmon Punkt/Gorado		2,0	2,0	1,0	5,0
		Total A (ohne Rechner)					
		S	6,0	12,0		2,0	30,0
		%	20,0	40,0	33,3	6,7	20.0
		Richtlinie:	7,5	12,0 40,0	9,0	1,5 5,0	30,0
		Toleranz (in Punkten):	1,0		2,0	1,0	

		Teil B (mit Rechner)					
B1	а	Sämtliche abengenannte Funktianen auf falgende Merkmale unterzuchen: Arymptate am Graphen	1,0	1,0			2,0
Analysis	b	id. Abloitungon	2,0	1,0			3,0
	С	id.: Wondopunkto	1,0	2,0			3,0
Minimum 4 Toilfragon	d	Intografrochnung auf Borochnung von Flächeninhalten in der Ebene	1,0	2,0			3,0
	е	Sämtliche abeng. Funktionen auf folgende Merkmale unterz.: Stetigkeit	2,0	1,0			3,
	f	id: Difforonziorbarkoit		2,0	1,0		3,
	g	Borochnung van Flächoninhalton in dor Ebono		1,0	2,0		3,
Höchstens 8 Teilfragen							0,0
		S	7,0	10,0	3,0	0,0	20,
		%	35,0	50,0	15,0	0,0	
		Richtlinie:	5,0	8,0	6,0	1,0	20,
		%	25,0	40,0	30,0	5,0	
		Toleranz (in Punkten):	2,0	4,0	3,0	1,0	
B2	а	Golichungon oiner Ebone auftstellen (S6)	1.0	2,0			3.0
Geometrie	b	Spitzon Winkel zuirchen Ebenen erstellen		3,0			3,0
	С	Skalarprodukt zwoior Voktoron bortimmon; Botrag oiner Voktore		1,0	2.0		3,0
Minimum 4 Toilfragon	d	c) Am Flächeninhalt anwenden	1,0	1,0			2,
	е	Sonkrochto Prajektian bestimmen			2,0	1,0	3,0
	f	Dio gogonzoitigo Lagoboziohung bortimmon: Goradof Ebono		1,0	2,0	-	3,
	g	Abstand von Punkt zu Gerade bestimmen		1,0	2,0		3,
Hächstons & Toilfragon							0,0
		S	2,0	9,0	8,0	1,0	20,
		%	10,0	45,0	40,0	5,0	
		Richtlinie:	5,0	8,0	6,0	1,0	20,
		%	25,0	40,0	30,0	5,0	
		Toleranz (in Punkten):	2,0	4.0	3.0	1.0	

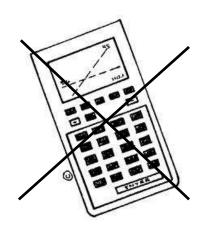
B3	а	Baumdiagrammo orstollon (Ziohon mit Zurücklogon) (S6)	1,0	2,0			3,0
Wahrscheinlichke	b	Bayor' Thourom	1,0	2,0			3,0
	С	Die Wahrscheinlichkeit einer binamial verteilten Zufallsvariablen bestim.	2,0	1,0			3,0
Mindostons 4 Toilfragon	d	Kumulativo Wahrrchoinlichkoiton oinor dirkroton Zufallvariablon hortimmon		1,0	2,0		3,0
	е	Daton anhand oiner Diagrammr unterruchen (Normalverteilung)	1,0				3,0
	f	Summonfunktion und Zurammonhang mit der Integralrechnung	1,0	1,0			2,0
	g	Erwartungsw., Varianz und Standardabweichung einersteti. Zufallsvar. best.	2,0	1,0			3,0
Höchstens 8 Teilfargen	h	Eino Normalvortoilung nutzon	1,0		1,0		2,0
		S	8,0	9,0	3,0	0,0	20,0
		%	40,0	45,0	15,0	0,0	
		Richtlinie:	5,0	8,0	6,0	1,0	20,0
		%	25,0	40,0	30,0	5,0	
		Toleranz (in Punkten):	2,0	4,0	3,0	1,0	
B4 oder B4 und	B4a	Dio Gliodor oinor Falgo borochnon		1,0			1,0
Folgen	B4b	Probl. lären welche die Eigenrchaften arithm. und geom. Folgen beinhalten			1,0	1,0	2,0
undłoder	B4c	Eino rokurzivo Falqo in Abhänqiqkoit van n darztollon			1,0	1,0	2,0
Komplexe Zahlen	B5a	Eino komploxo Zahl qraphirch darstollon	1,0				1,0
	B5b	Botraq und Arqumont oinos Prad./Quati.van zwoi kampl. Zahlon bostimmon		2,0			2,0
	B5c	Botraq und Arqumont oinos Prad./ Quat.van zwoi kampl. Zahlon bostimmon		2,0			2,0
							0,0
							0,0
		S	1,0	5,0	2,0	2,0	10,0
		%	10,0	50,0	20,0	20,0	
		Guideline:	2,5	4,0	3,0	0,5	10,0
		%	25,0	40,0	30,0	5,0	
		Tolerance (Points):	2,0	4,0	3,0	1,0	
		Total mit Doobnes					

Total mit Rechner					
S	18,0	33,0	16,0	3,0	70,0
%	25,7	47,1	22,9	4,3	
Guideline:	17,5	28,0	21,0		70,0
%	25,0	40,0	30,0	5,0	
Tolerance (Points):	2,0	4,0	3,0	1,0	
Total					
S	24,0	45,0	26,0	5,0	100,0
%	24,0	45,0	26,0	5,0	
Guideline:	25,0	40,0	30,0	5,0	100,0
Tolerance (Points):	3,0	5,0	4,0	2,0	

3. Beispiel für schriftliches Abitur (MA 3P 11. Juni 2019)

Als Beispiel wird hier das MA-3P-Dokument vom 11. Juni 2019 beigefügt. Der gleiche Ansatz kann auf die vorigen Abiturprüfungen für 3P und 5P angewendet werden.

MATHEMATIK 3 STUNDEN TEIL A


DATUM: 11. Juni 2019, Nachmittag

DAUER DER PRÜFUNG:

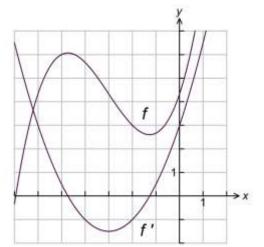
1 Stunde (60 Minuten)

ERLAUBTE HILFSMITTEL:

Prüfung ohne technologisches Hilfsmittel Bleistift für Zeichnungen

BESONDERE ANWEISUNGEN:

- Die Lösungen müssen durch Erklärungen erläutert werden.
- Diese müssen die Überlegungen darlegen, die zu den angegebenen Ergebnissen oder Lösungen führen.
- Wenn Graphen oder Diagramme verwendet werden, um eine Lösung zu finden, müssen diese als Teil der Antwort skizziert werden.
- Sofern nicht anders angegeben, wird keine volle Punktzahl erteilt, wenn für eine richtige Lösung keine erklärende Begründung oder Erläuterung gegeben wird, auf welchem Weg die Ergebnisse oder die Lösungen ermittelt wurden.
- Wenn die angegebene Lösung nicht korrekt ist, können trotzdem Teilpunkte vergeben werden, wenn erkennbar ist, dass eine geeignete Methode oder ein richtiger Ansatz verwendet wurde.


Seite 1/2

1) Lösen Sie die Gleichung $e^{4x-1} = 1$.

5 Punkte

Punkte

2) Das Diagramm zeigt den Graphen einer Funktion f und den Graphen der Ableitung f' von f.

Bestimmen Sie eine Gleichung der Tangente am Graphen von f im Punkt mit der Abszisse x=-2.

5 Punkte

3) Die folgende Tabelle enthält Informationen über die Funktion f und ihre Ableitung f'.

Х	- 4	- 3	- 2	– 1	0
f(x)	0	4	2	0	4
f'(x)	+	0	_	0	+

Skizzieren Sie einen möglichen Graphen für diese Funktion f.

5 Punkte

4) Gegeben ist die Funktion f durch

$$f(x) = 2x + 3 + \frac{1}{x+3}, \quad x > -3.$$

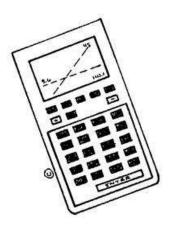
Bestimmen Sie diejenige Stammfunktion F von f, für die gilt F(-2) = 2.

5 Punkte

	TEIL A		
		Seite 2/2	Punkte
5)	Das Diagramm zeigt den Graphen der Funktion f mit der Gleichung $f(x) = x^3 - 4x$. Berechnen Sie den Inhalt der schraffierten Fläche.	$\int_{\frac{1}{2}}^{f} dx$	5 Punkte
6)7)	In einer Klasse mit 21 Schülern wurden Kurse gewählt. 12 Schüler haben Biologie gewählt, 14 Schüler haben Musik gewählt und 2 Schüler haben weder Biologie noch Musik gewählt. Berechnen Sie die Wahrscheinlichkeit, dass ein zufällig ausg Schüler sowohl Biologie als auch Musik gewählt hat. In einem Experiment sind Brotschnitten auf einer Seite mit B bestrichen.		5 Punkte
8)	Wenn man eine solche Brotschnitte fallen lässt, beträgt die Wahrscheinlichkeit $\frac{3}{5}$, dass die Butterseite unten zu liegen Man lässt 3 Brotschnitten fallen. Berechnen Sie die Wahrscheinlichkeit, dass bei genau 2 Brodie Butterseite unten zu liegen kommt. 10 Schüler erhalten bei einem Test die folgenden Punktzahle 10 2 5 7 8 5 6 7 8 4. Bestimmen Sie den Median, das untere Quartil, das obere Quartilen Sie die Daten in einem Boxplot dar.	en:	5 Punkte 5 Punkte

MATHEMATIK 3 STUNDEN

TEIL B


DATUM: 11. Juni 2019, Vormittag

DAUER DER PRÜFUNG:

2 Stunden (120 Minuten)

ERLAUBTE HILFSMITTEL:

Prüfung mit technologischem Hilfsmittel: TI-Nspire Taschenrechner im Modus "Press-to-test" Bleistift für Zeichnungen

BESONDERE ANWEISUNGEN:

- Verwenden Sie für jede Aufgabe eine eigene Seite.
- Die Lösungen müssen durch Erklärungen erläutert werden.
- Diese müssen die Überlegungen darlegen, die zu den angegebenen Ergebnissen oder Lösungen führen.
- Wenn Graphen oder Diagramme verwendet werden, um eine Lösung zu finden, müssen diese als Teil der Antwort skizziert werden.
- Sofern nicht anders angegeben, wird keine volle Punktzahl erteilt, wenn für eine richtige Lösung keine erklärende Begründung oder Erläuterung gegeben wird, auf welchem Weg die Ergebnisse oder die Lösungen ermittelt wurden.
- Wenn die angegebene Lösung nicht korrekt ist, können trotzdem Teilpunkte vergeben werden, wenn erkennbar ist, dass eine geeignete Methode oder ein richtiger Ansatz verwendet wurde.
- Einige Aufgaben können nur mit Hilfe des Rechners gelöst werden. Bei diesen Aufgaben befindet sich ein entsprechender Hinweis. Alle anderen Aufgaben können mit oder ohne Rechner gelöst werden.

TEIL B								
AUFGABE B1 ANALYSIS	Seite 1/1	Punkte						
geben sind die Funktionen f und g durch $f(x) = -x^2 - 2x + 5 \text{und} g(x) = x + 1.$								
Skizzieren Sie die Graphen von f und g im selben Diagram Bestimmen Sie die Koordinaten ihrer Schnittpunkte.	mm.	4 Punkte						
•								
Berechnen Sie den Inhalt der Fläche, die begrenzt wird dur Graphen von f und g zwischen den x -Werten -4 und 1.	ch die	2 Punkte						
Bestimmen Sie die <i>x</i> -Koordinate desjenigen Punkts auf der von <i>f</i> , in dem die Tangente parallel zum Graphen von <i>g</i> ist.	n Graphen	4 Punkte						
	geben sind die Funktionen f und g durch $f(x) = -x^2 - 2x + 5 \text{und} g(x) = x + 1.$ Skizzieren Sie die Graphen von f und g im selben Diagran Bestimmen Sie die Koordinaten ihrer Schnittpunkte. Der Inhalt A der Fläche, die begrenzt wird durch die Graphe Funktionen f und g zwischen den x -Werten a und b ist durch: $A = \int_a^b f(x) - g(x) dx \qquad .$ Berechnen Sie den Inhalt der Fläche, die begrenzt wird dur Graphen von f und g zwischen den g -Werten g -	geben sind die Funktionen f und g durch $f(x) = -x^2 - 2x + 5 \text{und} g(x) = x + 1.$ Skizzieren Sie die Graphen von f und g im selben Diagramm. Bestimmen Sie die Koordinaten ihrer Schnittpunkte. Der Inhalt A der Fläche, die begrenzt wird durch die Graphen der zwei Funktionen f und g zwischen den x -Werten g und g is tigegeben durch: $A = \int_{a}^{b} f(x) - g(x) dx$ Berechnen Sie den Inhalt der Fläche, die begrenzt wird durch die Graphen von g und g zwischen den g zwischen den g und g und g zwischen den g und g und g und g zwischen den g und g und g und g zwischen den g und g						

	TEIL B					
	AUFGABE B2 ANALYSIS	Seite 1/1	Punkte			
Ver	wenden Sie Ihren Rechner in a), b), d) und e).					
In einem Experiment wird die Zeit, in der die grünen Teeblätter ziehen, untersucht. Über die Teeblätter wird heißes Wasser gegossen.						
Die Substanz Thein in den Teeblättern wird dabei im heißen Wasser gelöst.						
der	Thein-Gehalt im heißen Tee in Abhängigkeit von Zeit wird in einem Modell beschrieben durch die ktion f mit					
	$f(x) = 48 \cdot (1 - e^{-0.6x})$.					
Tee	ei ist x die Zeit in Minuten, nachdem das heiße Wasser über blätter gegossen wurde, und $f(x)$ ist der Thein-Gehalt im heiessen in mg pro Gramm Tee.					
a)	a) Berechnen Sie den Thein-Gehalt nach einer Minute und nach 6 Minuten.					
b)	Zeichnen Sie das Schaubild von f für die ersten 10 Minuten.		3 Punkte			
c)	Interpretieren Sie den Faktor 48 in der oben gegebenen Gle	ichung.	3 Punkte			
d)	Der Tee ist trinkfertig, wenn der Thein-Gehalt den Wert von erreicht hat.	33,6 mg/g				
	Bestimmen Sie, zu welcher Zeit der Tee trinkfertig ist.		3 Punkte			
e)	Der Tee enthält außerdem die Substanz Tannin. Der Tannin-Gehalt im heißen Tee wird in einem Modell besodurch die Funktion g mit	hrieben				
	$g(x) = \frac{37}{1 + e^{-3x+6}}$.					
	Dabei ist x die Zeit in Minuten, nachdem das heiße Wasser in Teeblätter gegossen wurde, und $g(x)$ ist der Tannin-Gehaltee, gemessen in mg pro Gramm Tee.					
	Der Tee schmeckt am besten, wenn die Wachstumsrate des Gehaltes $g'(x)$ ihr Maximum besitzt.	Tannin-				
	Bestimmen Sie, zu welcher Zeit der Tee am besten schmeck	ĸt.	4 Punkte			

	TEIL B						
	AUFGABE B3 WAHRSCHEINLICHKEIT	Seite 1/1	Punkte				
Ver	wenden Sie Ihren Rechner in allen Aufgaben.						
	In einer Fabrik gibt es zwei Maschinen. Eine füllt Ananas-Saft in Büchsen und die andere füllt Eistee in Büchsen.						
Büd	Die Vorschrift besagt, dass die Büchsen 33 Zentiliter (cl) enthalten sollen. Büchsen, die weniger als 31,5 cl oder mehr als 34 cl enthalten, werden als unkorrekt gefüllt klassifiziert.						
a) Das Volumen, das die Maschine A in die Büchsen füllt, folgt einer Normalverteilung mit dem Erwartungswert $m = 32,5$ cl und der Standardabweichung $s = 0,5$ cl.							
	Eine Büchse mit Ananas-Saft wird zufällig ausgewählt.						
	Zeigen Sie, dass die Wahrscheinlichkeit, dass die Büchse ur gefüllt ist, den Wert 0,0241 besitzt.	nkorrekt	3 Punkte				
	% aller Büchsen, die in der Fabrik gefüllt werden, enthalten Ei 5 % der Büchsen mit Eistee werden als unkorrekt gefüllt klass						
b)	Eine der Büchsen aus dieser Fabrik wird zufällig ausgewählt						
	Zeigen Sie, dass die Wahrscheinlichkeit, dass diese Büchse unkorrekt gefüllt klassifiziert wird, den Wert 0,0275 besitzt.	als	3 Punkte				
c)	Wenn bekannt ist, dass eine zufällig aus der Produktion gew Büchse unkorrekt gefüllt ist, berechnen Sie die Wahrscheinli diese Büchse Ananas-Saft enthält.		3 Punkte				
Die	Büchsen mit Ananas-Saft werden in 6er-Kartons verpackt.						
d)	Berechnen Sie die Wahrscheinlichkeit, dass sich in einem zu ausgewählten 6er-Karton genau eine unkorrekt gefüllte Büch Ananas-Saft befindet.	J	3 Punkte				
e)	Berechnen Sie die Wahrscheinlichkeit, dass sich in einem zu ausgewählten 6er-Karton mehr als eine unkorrekt gefüllte Bü Ananas-Saft befindet.	•	3 Punkte				

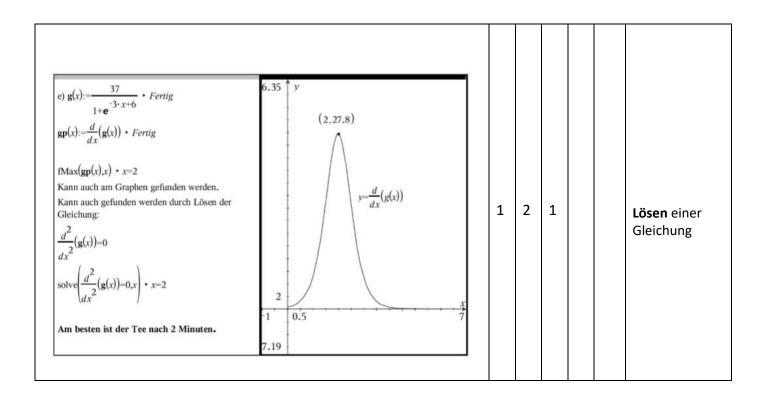
TEIL B								
	AUFGAB	E B4	STATIS	TIK		Seite 1/	1 Punkte	
Verwenden Sie Ihren Rechner in a), b), c), d) und f). Die folgende Tabelle zeigt die globale Produktion von Plastik von 2010 bis 2013.								
	Jahr		2010	2011	2012	2013		
	Zeit in Jahren nach 2010	X	0	1	2	3		
	Plastikproduktion (Millionen Tonnen)	У	313	325	338	352		
		1	Quell	e: https://ww	w.theatlas.com	n/charts/BkAVFs	irb	
Die	Funktion f mit							
			$f(x)=\mathrm{e}^{5.7}$	745+0,040 <i>x</i>				
f(x	ein exponentielles Modell) ist eine Schätzung für d t <i>x</i> in Jahren nach 2010.		_					
a)	Zeichnen Sie in ein gem gegebenen Daten und d				•	für die	5 Punkte	
b)	Schätzen Sie mit dieser	Funl	ktion f die	Plastikpro	duktion für	2015.	2 Punkte	
c)	Schätzen Sie mit der Fu zum ersten Mal den We					•	3 Punkte	
 d) Bestimmen Sie eine Gleichung der Form y = a · b * für die exponentielle Regression von y in Abhängigkeit von x unter Verwendung der gegebenen Daten. Geben Sie die Zahl b auf vier Dezimalstellen genau an. 							le 4 Punkte	
Vei	wenden Sie für e) und f)	das e	exponentie	elle Regre	ssionsmod	ell g mit		
$g(x) = 313 \times 1,040^{x}$.								
e)	Wie groß ist die jährliche	e pro	zentuale V	Vachstum	srate beim	Modell g?	3 Punkte	
f)	Verwenden Sie beide M 2020.			ätzen Sie	die Plastik	produktion fi	ir 3 Punkte	
	Kommentieren Sie Ihre	Erge	bnisse.					

4. BEWERTUNGSSCHEMA UND LÖSUNGSVORSCHLÄGE

Im Folgenden wird anhand der Abiturprüfung MA 3P (Juni 2019) ein Bewertungsschema angegeben, das mit der Mathematikmatrix verknüpft ist. Der Kürze halber wurde das 5P-Bewertungsschema weggelassen, da es, angesichts des gemeinsamen Ansatzes für den 3P- und 5P-Kurs, einer gleichartigen Struktur folgen würde.

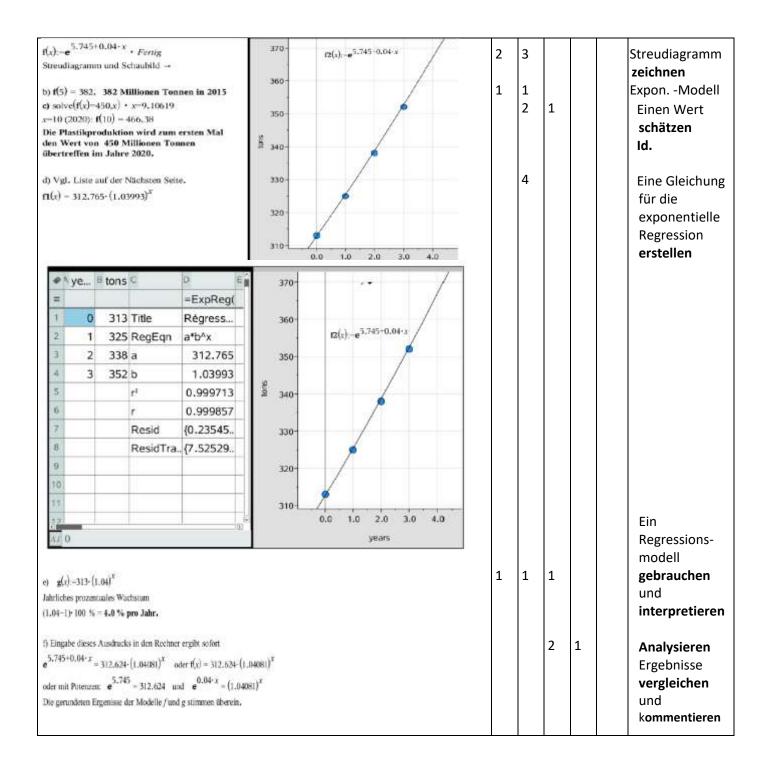
Fragen Teil A (3P) - 2019						
1.Wissen und Verständnis	1.	2.	3.	4.	Σ	Lernziele/
2.Methoden						Aufgaben
Problemlösen Interpretation und Verknüpfung						Tion gain on
A1						Analyse
Lösen Sie die Gleichung e ^{4x-1} = 1					5	Allalyse
Losen Sie die Gleichung e = 1					٦	
						S7: Kenntnis
$e^{4x-1} = 1 \Leftrightarrow 4x-1 = 0 \Leftrightarrow x = \frac{1}{4}$.	3	2				der Exponential-
$\frac{1}{4}$	3	_				funktion
4x - 1 = 0						
						S2: Lösen
Lösung: $x = \frac{1}{4}$						einer
- 4						Gleichung
A2						Analyse
					5	,
Das Diagramm zeigt den Graphen einer Funktion f und						
den Graphen der Ableitung f' von f .						
V						
f / 1 >×						
Bestimmen Sie eine Gleichung der Tangente am Graphen						
von f im Punkt mit der Abszisse $x=-2$.						
1. Methode: 2.						S6:
x = -2 in Tangentengleichung $y - f(-2) = f(-2)(x - (-2))$.						Kenntnis
$\chi = 2 \text{ in range interigretion and } y = I(-2) = I(-2)(\chi = (-2)).$						der
Schaubilder ergeben f: $f(-2) = 3$ und $f(:) f(-2) = -1$.	1	2	2			Gleichung
Tongontongleichung: $V = 2 + (4)(v + 2) \rightarrow V = 4$	1	_	_			für eine
Tangentengleichung: $y - 3 = (-1)(x + 2) \Leftrightarrow y = -x + 1$.						

Punkt mi Schaubild y = -X + Der Punk erfüllen:	3 d von t der <i>F</i> d von - 1. ct (-2 3 = 2 ot für c	Abszisse f :: ; 3) must $2 + k \Leftrightarrow k$ die Tang	x = -2 ss die Tar k = 1.	nd Tange in die Gle ngentengl chung vo	eichung eichung	hung im nkt mit der	1	2	2		Tangente am Graphen Lesen am Graphen und Kenntnis der Tangenten- gleichung Lösen (Berechnen und Reduzieren)
A3											Analyse
und ihre			-3 4 0	-2 2 -	_1 0 0	0 4				į	
Skizziere	n Sie (einen mo	öglichen	Graphen (dieser Fu	nktion f.	1	3	1		S6:
Zu	um Bei	spiel:		-2		-2		3	1		Skizzieren eines möglichen Graphen


A4					Analyse
					,
Gegeben ist die Funktion f durch				5	
$f(x) = 2x+3+\frac{1}{x+3}, \qquad x > -3.$					
x+3 Bestimmen Sie diejenige Stammfunktion F von f für die gilt					
F(-2) = 2.					
Menge aller Stammfunktionen von f , da $x > -3$ $\int f(x) \ dx = x^2 + 3x + \ln(x+3) + k$ Gesuchte Stammfunktion F von f: $F(-2) = 2$ $(-2)^2 + 3 \cdot (-2) + \ln 1 + k = 2$ $4 - 6 + k = 2, k = 4$ Hieraus folgt: $F(x) = x^2 + 3x + \ln(x+3) + 4 \qquad x > -3$	2	2	1		S7: Bestimmen einer Stamm- funktion Anwenden einer Bedingung Schlussfolgern: Stammfunktion
A5					Analyse
Das Diagramm zeigt den Graphen der				5	- /
Funktion f mit der Gleichung					
$f(x) = x^3 - 4x.$					
Berechnen Sie den Inhalt der schraffierten Fläche.					
Berechnen Sie den inhalt der schräftlerten Flache.					
Das Schaubild von f schneidet die x-Achse bei $x=-2$, $x=0$ und $x=2$.					S7: Erkennen
Inhalt der schraffierten Fläche:					Formel
$A = \int_{-2}^{2} f(x) dx = 2 \int_{-2}^{0} f(x) dx = 2 \int_{0}^{2} (-f(x)) dx$					erstellen
da das Diagramm in Bezug auf den Ursprung symmetrisch ist.	2	2	1		und Integral
$A = 2 \int_{-2}^{0} (x^3 - 4x) dx = 2 \cdot \left[\frac{x^4}{4} - 2x^2 \right]_{-2}^{0} = 8$					rechnen

A6					Wahrschein -lichkeit
In einer Klasse mit 21 Schülern wurden Kurse gewählt: 12 Schüler haben Biologie gewählt, 14 Schüler haben Musik gewählt und 2 Schüler haben weder Biologie noch Musik gewählt. Berechnen Sie die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler aus dieser Klasse sowohl Biologie als auch Musik gewählt hat.				5	-iiciikeit
19 Schüler haben Biologie und/oder Musik gewählt. Also haben $14+12-19=7$ die sowohl Biologie als auch Musik gewählt. Die Wahrscheinlichkeit, dass ein zufällig ausgewählter Schüler dieser Klasse sowohl Biologie als auch Musik gewählt hat, beträgt: $P(Schüler\ hat\ sowohl\ Biologie\ als\ auch\ Musik\ gewählt) = \frac{7}{21} = \frac{1}{3}.$	2	2	1		S7: Analysieren und erklären Berechnen
In einem Experiment sind Brotschnitten auf einer Seite mit Butter bestrichen. Wenn man eine solche Brotschnitte fallen lässt, beträgt die Wahrscheinlichkeit $\frac{3}{5}$, dass die Butterseite unten zu liegen kommt. Man lässt 3 Brotschnitten fallen. Berechnen Sie die Wahrscheinlichkeit, dass bei genau 2 dieser Brotschnitten die Butterseite unten zu liegen kommt.					Wahrschein- lichkeit
P(genau 2 Brotschnitten – Butterseite unten) $= 3 \cdot \left(\frac{3}{5}\right)^2 \cdot (1 - \frac{3}{5}) = \frac{54}{125}$ A8	2	3			Erkennen der Binomial- verteilung mit Param. Ausrechnen Statistiken
10 Schüler erhalten bei einem Test die folgenden Punktzahlen: 10 2 5 7 8 5 6 7 8 4. Bestimmen Sie den Median, den unteren und oberen Quartil und stellen Sie die Daten in einem Boxplot dar.				5	Julistikeli

Anordni	ıng der Da	ton in ans	toiaenda	r Form	١٠.							S7:
2	ung der Da' 4 5 ↑ 6,5¦ unter	5 res Quartil	6 ↑	7 und obe	7 eres Q	\uparrow	8 = 8.	10	2	3		Bestimmen des Medians, der Quartile. Mithilfe eines Boxplots
			Boxpl	ot								darstellen


Fragen Teil B (3P) - 2019							
Wissen und Verständnis Methoden Problemlösen	1.	2.	3.	4.	Σ	Lernziele/- aufgaben	
4. Interpretation und Verknüpfung B1							Analyse
 Gegeben sind die Funktionen f und g durch f(x) = -x²-2x+5 und g(x) = x+1. a) Skizzieren Sie die Graphen von f und g im selben Diagramm. Bestimmen Sie die Koordinaten ihrer Schnittpunkte. b) Der Inhalt A der Fläche, die begrenzt wird durch die Graphen der zwei Funktionen f und g zwischen den x-Werten a und b ist gegeben durch: A = ∫_a^b f(x) - g(x) dx Berechnen Sie den Inhalt der Fläche, die begrenzt wird durch die 					10	S6/S7: Lineare und quadratische Modelle Flächeninhalt des Bereichs, der durch zwei Graphen und zwischen x-Werten begrenzt ist	
 Graphen von f und g zwischen den x-Werten – 4 und 1. c) Bestimmen Sie die x-Koordinate desjenigen Punkts auf dem Graphen von f, in dem die Tangente parallel zum Graphen von g ist. 	4 Punkte						
Gleichung $f(x) = g(x)$: solve $(f(x) = g(x), x) \cdot x = 4$ or $x = 1$ b) Für den Flächeninhalt gilt: $\int_{-4}^{1} (f(x) - g(x)) dx = \frac{125}{6} \approx 20.8333$ Auch eine graphische Bestimmung ist möglich. $(-4.89, -9.13)$	(x)-g(x) x 10	1	1 2	2			Skizzieren der Schaubilder Bestimmen der Koordinaten von Schnitt- punkten Berechnen des Inhaltes der Fläche (zwischen zwei x-Werten begrenzt)
c) Ableitung fp von f : $\mathbf{fp}(x) := \frac{d}{dx}(\mathbf{f}(x)) \cdot Fertig$ $\operatorname{solve}(\mathbf{fp}(x) = 1, x) \cdot x = \frac{-3}{2}$ $x - \text{Koordinate ist} \frac{-3}{2} \cdot \mathbf{fp}(x)$ Die Tangente in diesem Punkt ist eingezeichnet (nicht verlangt)						Den x- Koordinaten bestimmen Parallele Geraden kennzeichnen	

B2									Analyse
Verwenden Sie Ihren Rechner in a), b), d) u	ınd e).							15	S7:
In einem Experiment wird die Zeit, in der die		en,							Exponential-
untersucht.	700000	-							funktionen
Über die Teeblätter wird heißes Wasser ge									
Die Substanz Thein in den Teeblättern wird heißen Wasser gelöst.	dabei im								
Der Thein-Gehalt im heißen Tee in Abhäng der Zeit wird in einem Modell beschrieben ${\bf c}$ Funktion ${\bf f}$ mit	lurch die	03/							
$f(x) = 48 \cdot (1 - \epsilon)$	- ^{0,8} x).								
Dabei <u>ist_x</u> die Zeit in Minuten, nachdem d Teeblätter gegossen wurde, und $f(x)$ ist o gemessen in mg pro Gramm Tee.									
Berechnen Sie den Thein-Gehalt nach nach 6 Minuten.	einer Minute und		2 Punkte						
b) Zeichnen Sie das Schaubild von f für	die ersten 10 Minuten.		3 Punkt€						
c) Interpretieren Sie den Faktor 48 in de	r oben gegebenen Gleicl	hung.	3 Punkt€						
d) Der Tee ist trinkfertig, wenn der Thein- erreicht hat.	Gehalt den Wert von 33,	6 mg/g							
Bestimmen Sie, zu welcher Zeit der Te	e trinkfertig ist.		3 Punkte						
e) Der Tee enthält außerdem die Substan Der Tannin-Gehalt im heißen Tee wird durch die Funktion g mit	in einem Modell beschrie	eben							
$g(x) = \frac{37}{1 + e^{-3x}}$	+6								
Dabei <u>ist x</u> die Zeit in Minuten, nachde Teeblätter gegossen wurde, und $g(x)$ Tee, gemessen in mg pro Gramm Tee.									
Der Tee schmeckt am besten, wenn die Gehaltes $g'(x)$ ihr Maximum besitzt.	e Wachstumsrate des Ta	annin-							
Bestimmen Sie, zu welcher Zeit der Te	e am besten schmeckt.		4 Punkte						
Math3p-2019-B2									
300000 400000 400000 400000 400000 400000 4000000	co *								
$\mathbf{f}(x) := 48 \cdot \left(1 - \mathbf{e}^{-0.6 \cdot x}\right) \cdot Fertig$	60 Î y		- 1						
a) f(1) • 21.657 f(6) • 46.6885	f2(x)=48								
Koncentration nach 1 Minute: 21.6 mg/g	+			1	1				Berechnen des
Koncentration nach 6 Minuten: 46.7 mg/g		$\mathbf{fr}(x) = \{\mathbf{f}(x) = \mathbf{fr}(x) $	x),x≥0	1	1				y-Wertes
b) see graph →		- ATT - ATT	105/00/- 53						
c) $\lim_{x\to 0} (f(x)) \cdot 48$.	<i></i>								
$X \rightarrow \infty$	/(2.01,33.0	6) f5((x)=33.6						
Der obere Grenzwert der Thein-Konzentration ist 48 mg/g.	1 /					1	2		Zeichnen des
Vgl. Graph →	1 /								Diagramms
	‡ /			1	2				lutour ti
d) solve(f(x)=33.6,x) • x=2.00662 Nach 2,0 Minuten beträgt die Konzentration	1/								Interpretieren eines Faktors
33.6 mg/g Sie kann ebenfalls gefunden werden am	. ↓								
Graphen mit dem Intersection-Befehl.	2 1		10	2	1				Lösen einer Exponential-
									Gleichung

В3							Wahrscheinlic hkeit
 Verwenden Sie Ihren Rechner in allen Aufgaben. In einer Fabrik gibt es zwei Maschinen. Eine füllt Ananas-Saft in Büchsen und die andere füllt Eistee in Büchsen. Die Vorschrift besagt, dass die Büchsen 33 Zentiliter (cl) enthalten sollen. Büchsen, die weniger als 31,5 cl oder mehr als 34 cl enthalten, werden als unkorrekt gefüllt klassifiziert. a) Das Volumen, das die Maschine A in die Büchsen füllt, folgt einer Normalverteilung mit dem Erwartungswert μ= 32,5 cl und der Standardabweichung σ = 0,5 cl. Eine Büchse mit Ananas-Saft wird zufällig ausgewählt. Zeigen Sie, dass die Wahrscheinlichkeit, dass die Büchse unkorrekt gefüllt ist, den Wert 0,0241 besitzt. 40 % aller Büchsen, die in der Fabrik gefüllt werden, enthalten Eistee. 3,25 % der Büchsen mit Eistee werden als unkorrekt gefüllt klassifiziert. 	3 Punkte					15	Wahrscheinlic hkeit S6:Allgemeine Wahrscheinlich keitsregeln, Abhängige Ereignisse, Bedingte Wahrscheinlich -keiten S7: Normalverteilung
 b) Eine der Büchsen aus dieser Fabrik wird zufällig ausgewählt. Zeigen Sie, dass die Wahrscheinlichkeit, dass diese Büchse als unkorrekt gefüllt klassifiziert wird, den Wert 0,0275 besitzt. c) Wenn bekannt ist, dass eine zufällig aus der Produktion gewählte Büchse unkorrekt gefüllt ist, berechnen Sie die Wahrscheinlichkeit, dass 	3 Punkte						
diese Büchse Ananas-Saft enthält. Die Büchsen mit Ananas-Saft werden in 6er-Kartons verpackt. d) Berechnen Sie die Wahrscheinlichkeit, dass sich in einem zufällig ausgewählten 6er-Karton genau eine unkorrekt gefüllte Büchse mit Ananas-Saft befindet. e) Berechnen Sie die Wahrscheinlichkeit, dass sich in einem zufällig ausgewählten 6er-Karton mehr als eine unkorrekt gefüllte Büchse mit Ananas-Saft befindet.	3 Punkte						
a) $P(\text{unkorrekt gegüllt aus A}) = 1-\text{normCdf}(31.5,34,32.5,0.5) = 0.0241$ or $\text{normCdf}(-\infty,31.5,32.5,0.5)+\text{normCdf}(34,\infty,32.5,0.5) \cdot 0.0241}$ b) $P(\text{unkorrekt gegüllt}) = P(\text{unkorrekt gegüllt} A) \cdot P(A) + P(A) \cdot P(A) + P(A) \cdot P(A$	$(B) \cdot P(B) =$	2	1 2	1 2	2		Berechnen einer Wahrscheinlich keit (Normalvert.) Bedingte Wahrscheinlich keit Id. Binomial- verteilung Id.

B4								Statistiken
							20	S7:
Verwenden Sie Ihren Rech	ner in	a) b) c)	d) und f)					Visualisierung,
		70 Mar 1800 Mars	A STATES	(225)3557				Korrelation,
Die folgende Tabelle zeigt von 2010 bis 2013.	die glo	obale Prod	luktion voi	n Plastik				Regression
Jahr		2010	2011	2012	2013			
Zeit in Jahren nach 2010	×	0	1	2	3			
Plastikproduktion (Millionen Tonnen)	У	313	325	338	352			
		[Queli	e. https://ww	w.theatlas.co	m/charts/BkAVFs	b		
Die Funktion f mit		$f(x) = e^{5.745}$	+0.040 v					
ist ein exponentielles Mode				n Daten be	eruht.			
f(x) ist eine Schätzung fü								
Zeit x in Jahren nach 2010	ο.							
Zeichnen Sie in ein ge gegebenen Daten und					ı für die	5 Punkte		
b) Schätzen Sie mit diese	er Funl	ktion f die	Plastikpr	oduktion t	ür 2015.	2 Punkte		
 Schätzen Sie mit der F zum ersten Mal den We 					•	3 Punkte		
d) Bestimmen Sie eine Gl	eichur	ng der For	m y = a	b ^x für die	exponentielle	4 Punkte		
Regression von y in A gegebenen Daten. Geben Sie die Zahl b					ing der			
Verwenden Sie für e) und f) das e		elle Regre		dell g mit			
e) Wie groß ist die jährlich	ne proz	zentuale V	Vachstum	srate bein	n Modell g?	3 Punkte		
f) Verwenden Sie beide für 2020.			ätzen Sie	die Plasti	kproduktion	3 Punkte		
Kommentieren Sie Ihre	Erget	onisse.						

