

New Marking Scale S6/S7 Mathematics 3 and 5 Period

The exemplars below illustrate the procedures outlined in the Matrix Manual Mathematics, which accompanies this document. Please note that the approach is the same for both the 3P and 5P mathematics course. It is recommended that the manual is read prior to viewing these documents.

1. Generic Matrices

The original Excel spreadsheets for these matrices are available for use. Please refer to the communications received from the mathematics inspector.

1.1 Generic MA 3P Matrix

	EUROPEAN BACCALAUREATE - Generic MA 3P Matrix										
Element of Examination	Question	Learning Objective (specific syllabus reference(s))	Pa	Paper-specific Marking Scheme							
			Knowledge and Comprehension	Methods	Problem Solvng	Interpretation and Linking	Σ				
	Part A Non Calculator										
Analysis	A1						0,0				
Analysis	A2						0,0				
Analysis	A3						0,0				
Analysis	A4						0,0				
Analysis	A5						0,0				
Probability	A6						0,0				
Probability	A7						0,0				
Statistics	A8						0,0				
		S	0,0	0,0	0,0	0,0	0,0				
		%	0,0	0,0	0,0	0,0	10.0				
		Guideline:	12,0	18,0	8,0	2,0	40,0				
		%	30,0	45,0	20,0	5,0					
		I olerance (Points):	3,0	4,0	2,0	2,0					

The fields	marked in y	vellow can b	be filled in, a	all others a	e protected	I.				
The Sums	are	green:		ok						
		orange:		within tolerance						
red:				not allowed						
For each individual question in the calculator paper (B1, B2 etc.), there is										
more flexit	more flexibility in the spread of the marks but the overall weighting of the									

marks for the whole calculator paper must be respected.

		Part B - Calculator					
B1	B1a						0,0
Analysis	B1b						0,0
Exactly 3 sub questions	B1c						0,0
		S	0,0	0,0	0,0	0,0	0,0
		% %	0,0	0,0	0,0	0,0	40.0
		Guideline:	3,0	4,5	2,0	0,5	10,0
		70 Tolerance (Points):	30,0	45,0	20,0	2.0	
		Tolefance (Folinta).	5,0	,v	2,0	2,0	
B2	B2a						0,0
Analysis	B2b						0,0
	B2c						0,0
Minimum 4 sub questions	B2d						0,0
Maximum 5 sub questions	(B2e)						0,0
		S	0,0	0,0	0,0	0,0	0,0
		% Cuideline:	0,0	0,0	0,0	0,0	15.0
		Guideinte.	4,5	45.0	20.0	0,0	15,0
		70 Telerance (Deinte):	2.0	45,0	20,0	2,0	
		Tolerance (Points).	3,0	4,0	2,0	2,0	
B3	B3a						0,0
Probability	B3b						0,0
	B3c						0,0
Minimum 4 sub questions	B3d						0,0
Maximum 5 sub questions	(B3e)			0.0		0.0	0,0
		S	0,0	0,0	0,0	0,0	0,0
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0,0	6.9	3.0	0,0	15.0
		Guideinie.	30.0	45.0	20.0	5.0	15,0
		Tolerance (Points):	3.0	4.0	2.0	2.0	
			-,-	-,,-	_,-	-,-	
B4 (and B5)	B4a						0,0
Statistics	B4b						0,0
	B4c						0,0
If there is no B5, B4 must have	B4d or B5a						0,0
Minimum 5 sub questions	B4e or B5b						0,0
Maximum 6 sub questions	B4f or B5c						0,0
		S	0,0	0,0	0,0	0,0	0,0
		%	0,0	0,0	0,0	0,0	
		Guideline:	6,0	9,0	4,0	1,0	20,0
		70 Toloranco (Points):	30,0	45,0	20,0	2.0	
		Tolerance (Folints).	3,0	4,0	2,0	2,0	
		Total Calculator	I				
		S	0.0	0.0	0.0	0.0	0.0
		%	0,0	0,0	0,0	0,0	
		Guideline:	18,0	27,0	12,0	3,0	60,0
		%	30,0	45,0	20,0	5,0	
		Tolerance (Points):	3,0	4,0	2,0	2,0	
		Total A and B					
		s	0,0	0,0	0,0	0,0	0,0

### 1.2. Generic MA 5P Matrix

	EURO	PEAN BACCALAUREATE - Generic MA 5F	9 Mat	rix				
Element of Examination	Question	Learning Objective (specific syllabus reference(s))	Pa	Paper-specific Marking Scheme				
			Knowledge and Comprehension	Methods	Problem Solvng	Interpretation and Linking	Σ	
Part A - Non Calculator								
Analysis	A1						0,0	
Geometry	A2						0,0	
Probability	A3						0,0	
Sequences	A4						0,0	
Complex Numbers	A5						0,0	
Analysis or Geom or Prob	A6						0,0	
Analysis or Geom or Prob	A7						0,0	
		S	0,0	0,0	0,0	0,0	0,0	
		%	0,0	0,0	0,0	0,0		
		Guideline:	7,5	12,0	9,0	1,5	30,0	
		%	25,0	40,0	30,0	5,0		
		Tolerance (Points):	10	20	20	10		

	Part B - Calculator					
B1						0,0
Analysis						0,0
						0,0
Minimum 4sub quartiens						0,0
						0,0
						0,0
						0,0
Maximum 8 sub questions						0,0
	S	0,0	0,0	0,0	0,0	0,0
	%	0,0	0,0	0,0	0,0	
	Guideline:	5,0	8,0	6,0	1,0	20,0
	%	25,0	40,0	30,0	5,0	
	Tolerance (Points):	2,0	4,0	3,0	1,0	
D0						0.01
BZ						0,0
Geometry						0,0
Minimum dauk ausatiana						0,0
r minimum 42 ab quarciana						0,0
						0,0
						0.0
Maximum 8sub quartiens						0.0
	S	0.0	0.0	0.0	0.0	0.0
	%	0,0	0,0	0,0	0,0	- 10
	Guideline:	5,0	8,0	6,0	1,0	20,0
	%	25,0	40,0	30,0	5,0	
	Tolerance (Points):	2,0	4,0	3,0	1,0	

					_		
B3							0,
Probability							0
							0
Minimum Asub questions							0
							0
							0
							0
Maximum 8sub quartions							0
		S	0,0	0,0	0,0	0,0	0
		%	0,0	0,0	0,0	0,0	
		Guideline:	5,0	8,0	6,0	1,0	20
		%	25,0	40,0	30,0	5,0	
		Tolerance (Points):	2,0	4,0	3,0	1,0	
B4 or B4 and B5	B4a						0
Sequences	B4b						0
and or	B4c						0
Complex Numbers	B5a						0
	B5b						0
	B5c						0
							0
							0
		S	0.0	0.0	0.0	0.0	0
		%	0.0	0.0	0.0	0.0	
		Guideline	2.5	4.0	3.0	0.5	10
		%	25.0	40.0	30.0	5.0	
		Tolerance (Points):	20,0	4.0	3.0	1.0	
		roterance (rotina).	2,0	4,0	5,5	1,0	

	Total Part B - Calculator					
	S	0,0	0,0	0,0	0,0	
	%	0,0	0,0	0,0	0,0	
	Guideline:	17,5	28,0	21,0	3,5	70,0
	%	25,0	40,0	30,0	5,0	
	Tolerance (Points):	2,0	4,0	3,0	1,0	

	Total A and B					
	S	0,0	0,0	0,0	0,0	0,0
	%	0,0	0,0	0,0	0,0	
	Guideline:	25,0	40,0	30,0	5,0	100,0
	Tolerance (Points):	3,0	5,0	4,0	2,0	

## 2. Paper-specific Matrices

These matrices use the 2019 Baccalaureate papers to illustrate the procedures laid out in the Matrix Manual Mathematics, which accompanies this document.

### 2.1. MA 3P (Based on the Baccalaureate of 11th June 2019)

EUROPEAN BACCALAUREATE - Paper specific Ma 3P Matrix (11th JUNE 2019)										
Element of Examination	Question	Learning Objective (specific syllabus reference(s))	Pa	per-sp S	ecific chem	: Mark ie	ing			
			Knowledge and Comprehension	Methods	Problem Solvng	Interpretation and Linking	Σ			
		Non Calculator								
Analysis	A1	Solve an exponential equation	3,0	2,0			5,0			
Analysis	A2	Determine an equation of a tangent	1,0	2,0	2,0		5,0			
Analysis	A3	Sketch a possible graph	2,0	2,0	1,0		5,0			
Analysis	A4	Determine a primitive function	1,0	3,0	1,0		5,0			
Analysis	A5	Calculate an area	2,0	2,0	1,0		5,0			
Probability	A6	Calculate a probability	2,0	2,0	1,0		5,0			
Probability	A7	Calculate a binomial probability	2,0	3,0			5,0			
Statistics	A8	Determine the median, quartiles and represent on a boxplot	2,0	3,0			5,0			
		S	15,0	19,0	6,0	0,0	40,0			
				47,5	15,0	0,0				
	Guideli		12,0	18,0	8,0	2,0	40,0			
	9			45,0	20,0	5.0				
		Tolerance (Points):	3,0	4,0	2,0	2,0				
		Calculator								
B1	B1a	Sketch Graphs-Determine Points of	2.0	2,0			4.0			
Analysis	B1b	Calculate area of a region bounded by	10	10			20			
Exactly 3 sub quartions	B1c	Use parallelism line/tangent line	0.0	2.0	2.0		4 0			
	2.0	S	3.0	5.0	2.0	0.0	10.0			
		%	30.0	50.0	20.0	0.0	,.			
		Guideline	3.0	4.5	20	0.5	10.0			
		%	30.0	45.0	20.0	5.0				
		Tolerance (Points):	3.0	4.0	2.0	2.0				
			-,-	.12	-,-	-,-				
B2	B2a	Exponential function-calculate values	1.0	1.0			2.0			
Analysis	B2b	Draw the graph	10	2.0			3.0			
	B2c	Interpret limit of a function		-12	1.0	2.0	3.0			
Minimum Asub quartions	B2d	Solve an exponential equation	2.0	1.0		1-	3.0			
Maximum 5sub quartiens	(B2e)	Interpret maximum growth rate	1.0	2.0	1.0		4.0			
		S	5.0	6.0	2.0	2.0	15.0			
		%	33.3	40.0	13.3	13.3				
		Guideline	4.5	6.8	3.0	0.8	15.0			
		%	30.0	45.0	20.0	5.0				
		Tolerance (Pointe):	3.0	4.0	2.0	2.0				
		rolerance (Folinis).	3,0	4,0	2,0	2,0				

B3	B3a	Calculate a conditinal probability/Normal		2,0	1,0		3,0
Probability	B3b	Calculate a conditional probability		1,0	2,0		3,0
	B3c	idem			1,0	2,0	3,0
Minimum Asub questions	B3d	Calculate a probability/Binomial distribution	2,0	1,0			3,0
Maximum Ssub quartiens	(B3e)	idem	1,0	2,0			3,0
		S	3,0	6,0	4,0	2,0	15,0
		%	20,0	40,0	26,7	13,3	
		Guideline:	4,5	6,8	3,0	0,8	15,0
		%	30,0	45,0	20,0	5,0	
		Tolerance (Points):	3,0	4,0	2,0	2,0	
B4 (and B5)	B4a	Expon. model: draw a scatter plot and the	2,0	3,0			5,0
Statistics	B4b	Estimate the value	1,0	1,0	4.0		2,0
Kabura in a PE Pd a uni	B4c	Solve an exponential equation		2,0	1,0		3,0
have	B4d or B5a	regression		4,0			4,0
Minimum 5 sub quartiens	B4e or B5b	Analyse annual percentage growth rate	1,0	1,0	1,0		3,0
Maximum 6 sub quartiens	B4f or B5c	Estimate and comment on models			2,0	1,0	3,0
		S	4,0	11,0	4,0	1,0	20,0
		%	20,0	55,0	20,0	5,0	
		Guideline:	6,0	9,0	4,0	1,0	20,0
		%	30,0	45,0	20,0	5,0	
		Tolerance (Points):	3,0	4,0	2,0	2,0	
		Total Calculator					
		Total Calculator	15.0	20.0	12.0	5.0	60.0
		5	25.0	46.7	20.0	0,0	00,0
		Cuideline:	18.0	27.0	12.0	3.0	60.0
		Guideline.	30.0	45.0	20.0	5.0	00,0
		Tolerance (Points):	3.0	4.0	20,0	2.0	
		roterance (rotins).	5,5	4,0	2,0	2,0	
1		Total					
		S	30,0	47,0	18,0	5,0	100,0
		%	30,0	47,0	18,0	5,0	
		Guideline:	30,0	45,0	20,0	5,0	100,0
		%	30,0	45,0	20,0	5,0	
		Tolerance (Points):	4,0	5,0	3,0	2,0	

The fields marked in yellow can be filled in, all others are protected.									
The Sums are	green:	ok							
	orange:	within tolerance							
	red:	not allowed							

For each individual question in the calculator paper (B1, B2 etc.), there is more flexibility in the spread of the marks but the overall weighting of the marks for the whole calculator paper must be respected.

Element of Examination	Question	Learning Objective (specific syllabus reference(s))	Pa	cing			
			Knowledge and Comprehension	Methods	Problem Solvng	Interpretation and Linking	Σ
	1	Non Calculator	-				
Analysis	A1	understand the concept of a primitive. P(x)/Q(x) where P(x) and Q(x) are polynomials of degree two or less	1,0	1,0	2,0		4,0
Geometry	A2	determine the relative position line/sphere	1,0	3,0	0,0		4,0
Probability	A3	tree diagrams of conditional events (sampling without replacement)	1,0	2,0	2,0		5,0
Sequences	A4	Calculate a limit of sequence from the basic set of recurrence relations for simple cases	1,0	2,0	1,0		4,0
Complex Numbers	A5	determine the magnitude and argument of the product and quotient of two complex numbers	2,0	1,0	1,0		4,0
Analysis or Geom or Prob	A6	examine the following characteristics for all the basic functions given above: tangent at a point		1,0	2,0	1,0	4,0
Analusis or Geom or Prob	Δ7	determine the relative position of point/line		2.0	2.0	10	5.0

## 2.2. MA 5P (Based on the Baccalaureate of 11th June 2019)

Total Non Calculator										
	S	6,0	12,0	10,0	2,0	30,0				
	%	20,0	40,0	33,3	6,7					
	Guideline:	7,5	12,0	9,0	1,5	30,0				
	%	25,0	40,0	30,0	5,0					
	Tolerance (Points):	1,0	2,0	2,0	1,0					
r					I					

			Calculator						
	B1	а	examine the following characteristics for all the basic functions given above:	1,0	1,0			2,0	
Ī	Analysis	b	examine the following characteristics for all the basic functions given above: designations	2,0	1,0			3,0	
Ī		С	examine the following characteristics for all the basic functions given above: is flexing exists	1,0	2,0			3,0	
Ī	Minimum Asub questions	d	integration to calculate arear in a plane	1,0	2,0			3,0	
		е	examine the following characteristics for all the basic functions given above:	2,0	1,0			3,0	Γ
		f	oxamine the following characteristics for all the basic functions given above: differentiability		2,0	1,0		3,0	
		g	integration to calculate arear in a plane		1,0	2,0		3,0	
	Maximum 8 sub quastions							0,0	
			S	7,0	10,0	3,0	0,0	20,0	
			%	35,0	50,0	15,0	0,0		
			Guideline:	5,0	8,0	6,0	1,0	20,0	
			%	25,0	40,0	30,0	5,0		
			Tolerance (Points):	2,0	4,0	3,0	1,0		
	B2	а	find parametric and carterian equations of a plane (56)	1,0	2,0			3,0	
	Geometry	b	calculate the acute angle if it exists made by:line/plane		3,0			3,0	
		С	the analytical expression of the scalar product (dot product) of two vectors, the length of a vector		1,0	2,0		3,0	
	Minimum Asub questions	d	winge	1,0	1,0			2,0	
		е	determine arthaganal projections			2,0	1,0	3,0	
		f	determine the relative paritian: line/plane		1,0	2,0		3,0	
		g	determine the relative paritian: paint/sphere		1,0	2,0		3,0	
	Maximum 8 sub quartions							0,0	
			S	2,0	9,0	8,0	1,0	20,0	
			%	10,0	45,0	40,0	5,0		
			Guideline:	5,0	8,0	6,0	1,0	20,0	
			%	25,0	40,0	30,0	5,0		
			Tolerance (Points):	2,0	4,0	3,0	1,0		

B3	а	tree diagrams of independent events (sampling with replacement) (S6)	1,0	2,0			3,0
Probability	b	Bayor' Theorem	1,0	2,0			3,0
	С	calculate probabilities for a binomially distributed random variable	2,0	1,0			3,0
Minimum Asub questions	d	find cumulative probabilities		1,0	2,0		3,0
	е	investigate data given in a table or a diagram to determine a corresponding onrmal distribution	1,0				1,0
	f	cumulative distribution function for a continuous condem variable and its solation to integral calculus	1,0	1,0			2,0
	g	mean (expected value), variance and standard deviation of a continuour randomuasiable	2,0	1,0			3,0
Maximum 8sub quartions	h	ure the normal dirtribution with probability of independent eventr		1,0	1,0		2,0
		S	8,0	9,0	3,0	0,0	20,0
		%	40,0	45,0	15,0	0,0	
		Guideline:	5,0	8,0	6,0	1,0	20,0
		%	25,0	40,0	30,0	5,0	
		Tolerance (Points):	2,0	4,0	3,0	1,0	
B4 or B4 and B5	B4a	calculate terms of asequence using the types of definitions above.		1,0			1,0
Sequences	B4b	solve problems involving the properties of arithmetic and geometric requestor			1,0	1,0	2,0
andlor	B4c	given the first terms of a sequence find the explicit ath term and or the recurrence selation where appropriate			1,0	1,0	2,0
Complex Numbers	B5a	represent a camplex number geametrically	1,0				1,0
	B5b	determine the magnitude and argument of the product and quotient of two complex numbers		2,0			2,0
	B5c	determine the magnitude and argument of the product and quotient of two complex numbers		2,0			2,0
							0,0
							0,0
		S	1,0	5,0	2,0	2,0	10,0
		%	10,0	50,0	20,0	20,0	
		Guideline:	2,5	4,0	3,0	0,5	10,0
		%	25,0	40,0	30,0	5,0	

Total Calculator										
	S	18,0	33,0	16,0	3,0	70,0				
	%	25,7	47,1	22,9	4,3					
	Guideline:	17,5	28,0	21,0	3,5	70,0				
	%	25,0	40,0	30,0	5,0					
	Tolerance (Points):	2,0	4,0	3,0	1,0					
					1					
	Tetal									

S 24,0 45,0 26,0 % 24,0 45,0 26,0 % 24,0 45,0 26,0	5,0 10	26,0	45,0	24.0		
<u>%</u> 24,0 45,0 26,0				21,0	S	
	5,0	26,0	45,0	24,0	%	
Guideline: [ 25,0 ] 40,0 ] 30,0	5,0 10	30,0	40,0	25,0	Guideline:	
Tolerance (Points): 3,0 5,0 4,0	2,0	4,0	5,0	3,0	Tolerance (Points):	

## 3.Sample Bac written examination

For reference the MA-3P 11th June 2019 paper is included here. The same approach can be applied to past BAC Exams for 3P and 5P.



**EUROPEAN BACCALAUREATE 2019** 

# MATHEMATICS 3 PERIODS PART A

DATE: 11th June 2019 Afternoon

#### DURATION OF THE EXAMINATION:

1 hour (60 minutes)

#### AUTHORIZED MATERIAL:

Examination without technological tool

Pencil for the graphs

#### SPECIFIC INSTRUCTIONS:

- Answers must be supported by explanations.
- They must show the reasoning behind the results or solutions provided.
- · If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it
  is evident that an appropriate method and/or a correct approach has been used.

ΕN



PARTA									
							Page 1/2	Marks	
1)	Solve the equati	on $e^{4x-1} = c^{4x-1}$	1.					5 marks	
2) The diagram below shows the graph of a function <i>f</i> and the graph of the derivative <i>t</i> ' of <i>f</i> .									
	Determine an equation of the tangent to the graph of <i>f</i> at the point								
	Determine an eq where $x = -2$ .	uation of t	he tange	nt to the	graph of	f at the p	point	5 marks	
3)	The table below derivative f'.	gives infor	mation c	oncernin	g the fun	ction f a	nd its		
	x	- 4	- 3	- 2	- 1	0			
	f(x)	0	4	2	0	4			
	f'(x)	+	0	-	0	+			
4)	Sketch a possibl Consider the fun f(x) = 2x +	e graph of ction <i>f</i> defi $3 + \frac{1}{x+3}$ ,	this function function that the function of t	tion <i>f</i> .				5 marks	
	Determine the p	imitive F o	ff given	that F(-	2) = 2.			5 marks	

	PARTA		
	Page	2/2	Marks
5)	The diagram shows the graph of the function <i>f</i> defined by $f(x) = x^3 - 4x$ . Calculate the area of the shaded region.	×x	5 marks
6)	In a class of 21 students		
	12 students study Biology, 14 students study Music and 2 students study neither Biology nor Music. Calculate the probability that a student selected at random from this class studies both Biology and Music.		5 marks
7)	In an experiment, slices of toasted bread are buttered on one side.		
	The probability that a slice lands butter side down if you drop it is $\frac{3}{5}$		
	3 slices are dropped.		
	Calculate the probability that exactly 2 of these slices land butter sid down.	e	5 marks
8)	10 students score the following marks in a test:		
	10 2 5 7 8 5 6 7 8 4 .		
	Determine the median, the lower and upper quartiles, and represent data on a boxplot.	the	5 marks



**EUROPEAN BACCALAUREATE 2019** 

# MATHEMATICS 3 PERIODS PART B

DATE: 11th June 2019 Morning

#### DURATION OF THE EXAMINATION:

2 hours (120 minutes)

#### AUTHORIZED MATERIAL:

Examination with technological tool:

Calculator TI-Nspire in "Press-to-test" mode

Pencil for the graphs

#### SPECIFIC INSTRUCTIONS:



- Answers must be supported by explanations.
- They must show the reasoning behind the results or solutions provided.
- If graphs are used to find a solution, they must be sketched as part of the answer.
- Unless indicated otherwise, full marks will not be awarded if a correct answer is not accompanied by supporting evidence or explanations of how the results or the solutions have been achieved.
- When the answer provided is not the correct one, some marks can be awarded if it
  is shown that an appropriate method and/or a correct approach has been used.
- Some of the questions can be answered only with the help of the calculator. The wording of these questions makes this clear. All other questions can be solved with or without the use of the calculator.



ΕN



PART B						
	QUESTION B1 ANALYSIS	Page 1/1	Marks			
Cor	nsider the functions <i>f</i> and <i>g</i> defined by					
	$f(x) = -x^2 - 2x + 5$ and $g(x) = x + 1$ .					
a)	<ul> <li>a) Sketch the graphs of <i>f</i> and <i>g</i> on the same diagram.</li> <li>Determine the coordinates of their points of intersection.</li> </ul>					
b)	The area $A$ of the region bounded by the graphs of two function $g$ between the x-values $a$ and $b$ is given by:	ons f and				
	$A = \int_a^b \left  f(x) - g(x) \right  dx \; .$					
	Calculate the area of the region bounded by the graphs of $f$ a between the x-values -4 and 1.	and g	2 marks			
c)	Determine the <i>x</i> -coordinate of the point on the graph of <i>f</i> when tangent line is parallel to the graph of <i>g</i> .	e the	4 marks			

PARTB							
	QUESTION B2 ANALYSIS	Page 1/1	Marks				
Use	e your calculator in a), b), d), and e).						
In a Hot The hot The is m	In experiment the steeping time for green tea leaves is studied. water is poured over the tea leaves. the theine in the tea leaves is then dissolved in the water. the theine content in the hot tea as a function of time hodelled by the function <i>f</i> defined by $f(x) = 48 \cdot (1 - e^{-0.8x})$ ,						
whe tea, leav	ere $f(x)$ is the theine content in the hot tea, measured in mg per and x is the time in minutes after the hot water was poured over ves.	er gram of er the tea					
a)	Calculate the theine content after 1 minute and after 6 minute	S.	2 marks				
b)	Draw the graph of <i>f</i> for the first 10 minutes.		3 marks				
c)	Interpret the factor 48 in the above equation.		3 marks				
d)	The tea is ready to drink when the theine content reaches 33.	6 mg/g.					
	Determine at what time the tea will be ready to drink.		3 marks				
e)	The tea also contains tannin. The tannin content in the hot tea function of time is modelled by the function	a as a					
	$g(x) = \frac{g(x)}{1 + e^{-3x+6}}$						
	where $g(x)$ is the tannin content in the hot tea, measured in r gram of tea, and x is the time in minutes after the hot water w over the tea leaves. The taste of tea is best when the tannin content growth rate g its maximum. Determine at what time the taste of the tea will be best.	ng per as poured r′(x) is at	4 marks				

PARTB						
QUESTION B3 PROBABILITY	Page 1/1	Marks				
Use your calculator in all questions.						
A factory has two machines, one fills pineapple juice into cans and the other fills iced tea into cans.						
The requirement is that each can contains 33 centilitres (cL). Cans which contain less than 31.5 cL or more than 34 cL are classified as incorrectly filled.						
a) The volume of pineapple juice filled into each can follows a normal distribution with mean $\mu = 32.5$ cL and standard deviation $\sigma = 1000$	ormal = 0.5 cL.					
A can of pineapple juice is selected at random.						
Show that the probability that this can is incorrectly filled is 0.0	0241.	3 marks				
40 % of all cans filled at the factory are cans of iced tea. 3.25 % of the cans of iced tea are classified as incorrectly filled.						
b) From the factory, a can is chosen at random.						
Show that the probability that this can is classified as incorrec 0.0275.	tly filled is	3 marks				
<ul> <li>c) Given that a randomly selected can is incorrectly filled, calcula probability that it contains pineapple juice.</li> </ul>	ate the	3 marks				
The pineapple cans are packaged in packs of 6.						
<ul> <li>d) Calculate the probability that there is exactly one incorrectly fi a randomly selected pineapple juice six-pack.</li> </ul>	lled can in	3 marks				
<ul> <li>e) Calculate the probability that there is more than one incorrectl can in a randomly selected pineapple juice six-pack.</li> </ul>	y filled	3 marks				

PARTB									
	QUESTIO	N B4	STATIST	ncs		Page	1/1	Marks	
Use your calculator in a), b), c), d) and f). The table below shows the global production of plastic from 2010 to 2013.									
	Year		2010	2011	2012	2013			
	Time in years after 2010	x	0	1	2	3			
	Plastic production (million tonnes)	у	313	325	338	352			
is a f(x	Source: https://www.theatlas.com/charts/BkAVFsjrb The function f defined by $f(x) = e^{5.745+0.040x}$ is an exponential model based on the data given. f(x) is an estimate of the plastic production in million tonnes at time x in years after 2010								
a)	On the same diagram, d table, and draw the grap	raw a h of t	a scatter p the functio	lot repres n f .	enting the	data from	the	5 marks	
b)	Using the function f, esti	mate	the plasti	c producti	on for 201	5.		2 marks	
c)	Using the function <i>f</i> , estithe first time, exceed 45	mate 0 mill	in which y lion tonnes	year the p s.	lastic prod	uction will,	for	3 marks	
d) Determine an equation in the form $y = a \cdot b^x$ of the exponential regression of y on x using the data given. Give the number b correct to four decimal places.							4 marks		
For	e) and f) use the expone	ntial	regressior	n model g,	where				
		g(x	) = 313 · 1.	040 [×] .					
e)	What is the annual perce	entag	e growth	rate in the	model g?			3 marks	
f)	Using each of the two m Comment on your result	odels s.	s, estimate	e the plast	ic producti	on in 2020	).	3 marks	

## 4. Marking scheme

Below is an example of a marking scheme linked to the maths matrix. The 3p paper has been used to illustrate the formatting. For brevity, the 5p mark scheme has been omitted as, given the common approach being adopted for the 3p and 5p course, it would follow the same structure as the example below.

Questions Part A (3P) - 2019						
<ol> <li>1.Knowledge and Comprehension</li> <li>2.Methods</li> <li>3. Problem Solving</li> <li>4. Interpretation and Linking</li> </ol>	1.	2.	3.	4.	Σ	Learning Objectives / Tasks
A1						Analysis
Solve the equation $e^{4x-1} = 1$ .					5	Exponen- tial equation
$4x - 1 = 0$ solution $x = \frac{1}{4}$	3	2				<b>S7: Define</b> the exponential function <b>S2: Solve</b> an
						equation
A2		1	1	r –		Analysis
The diagram below shows the graph of a function <i>f</i> and the graph of the derivative <i>f'</i> of <i>f</i> . $\int \int $					5	Graph of a function and its derivative
where $x = -2$ .						
The tangent line to the graph of $f$ in its point having x-coordinate equal to $-2$ has equation						S6:

y - f(- f'(- y - i.e.	f(-2) = 3 (-2) = -1 3 = -(x + 1) y = -x + 1 (-2) = -1	f'(-2)(x - 2) 1	+ 2).					1	2	2			Know the formulae for a tangent to the graph Apply/ use the graphs Solve (Calculate and reduce)
y = f(-1) $y = For c$ solut	(-1x) = -1 (-1x) + c (2) = 3 (-x) + 1 (x) = -x + 1 (x) = -x + 1 (x) = -1 (x) =	ising the g	raph of f c	only, award	d maximui	т 3 p		1	2	2			Use the graph Apply a formula of tangent Solve
A3										T			Analysis
The and	table be its deriv	low gives ative f'.	s informa	ation con	cerning 1	the funct	ion f					5	Show understan- ding of a function
	x	- 4	- 3	- 2	– 1	0							and its
	f( <b>x</b> )	0	4	2	0	4							derivative
	f'( <b>x</b> )	+	0	-	0	+							
Sketch a possible graph of this function <i>f</i> .													
				.2		4		1	3	1			S6: Show understand- ding of Sketch a possible graph
	For ins	tance:				1. I.							

A4					Analysis
				5	
Consider the function <i>f</i> defined by					
$f(x) = 2x + 3 + \frac{1}{x+2}, \qquad x > -3.$					
Determine the primitive F of f given that $F(-2) = 2$ .					
For $x > -3$ we have: $\int f(x) dx = x^2 + 3x + \ln(x + 2) + k$					S7: Determine
$\int f(x)  dx = x^{-} + 3x + \ln(x + 3) + \kappa$ Using $F(-2) = 2$					a primitive
$(-2)^2 + 3 \cdot (-2) + \ln 1 + k = 2$	2	2	1		<b>Apply</b> a condition
4-6+k=2, from which we get $k=4$ .					Determine
The function F may thus be expressed by					the primitive
$F(x) = x^2 + 3x + \ln(x+3) + 4$					given that
A5					Analysis
				5	Area under
The diagram shows the graph of the					the graph
function <i>t</i> defined by					
$f(\mathbf{x}) = \mathbf{x}^3 - 4\mathbf{x}  .$					
Calculate the area of the shaded region.					
					S7:
The graph intersects the x-axis at $x = -2$ , $x = 0$ , $x = 2$ .	2	2	1		<b>Define</b> the area under
The area A of the shaded region is given by $A = \int_{-2}^{2}  f(x)  dx = 2 \int_{-2}^{0} f(x) dx = 2 \int_{0}^{2} (-f(x)) dx$ since the graph is symmetrical with respect to the origin.					Recognize Determine the
$A = 2 \int_{-2}^{0} (x^3 - 4x) dx = 2 \cdot \left[\frac{x^4}{4} - 2x^2\right]_{-2}^{0} = 8$					integral Interpret

					Probability
				5	Elemen- tary probability
2	2	1			S7: Probability Analyse and explain
					<b>Calculate</b> a probability
					Probability
				5	Binomial distri- bution
2	3				<b>Recognize</b> binomial parame- ters
					Statistics
				5	Elemen- tary statistics
	2	2 2	2       2       1         2       3       .         2       3       .	2       2       1         2       2       1         2       3          2       3	1       5         2       2       1       1         3       1       1       5         4       3       1       1         5       1       1       5         6       1       1       5         7       3       1       1         8       1       1       5         9       1       1       5         1       1       1       5         1       1       1       5         1       1       1       5         1       1       1       5         1       1       1       5



Questions Part B (3P) - 2019						
1. Knowledge and Comprehension	1.	2.	3.	4.	Σ	Learning
2. Methods						Objectives/
3. Problem Solving						Tasks
		l	l			Analysis
					10	Allalysis
Consider the functions 7 and g defined by					10	Bouisiting
						linoar and
$f(x) = -x^{*} - 2x + 5$ and $g(x) = x + 1$ .						nneur unu
						quuurutic
a) Sketch the graphs of f and g on the same diagram. 4 marks						models
Determine the coordinates of their points of intersection.						Area of the
b) The area A of the region bounded by the graphs of two functions f and						region
g between the x-values a and b is given by: 2 marks						bounded by
e l'erre and a						two grapns
$A = \int_{a}  f(x) - g(x)   dx  .$						and between x-
Calculate the area of the region bounded by the graphs of f and g						values
between the x-values -4 and 1.						
c) Determine the x-coordinate of the point on the graph of future the second						
tangent line is parallel to the graph of g.						
12.43 ⁴ v						
0(v)						sketch the
a(y) = x + 2 x+5 · Perag						graphs
g(A)-A+1 · Perlag	2	2				Determenter ether
(-1.5, 5.75)	2	2				Determine the
Intersection points $(-4 - 3)$ and $(1, 3)$ . f2(x)=g(x)						coordinates of
The intersection points can also be found by						points of
solving the equation $f(x)=g(x)$ : 20.8333 $f(x)=1$						Intersection
solve( $f(x)=g(x), x$ ) • x=-4 or x=1						
-10 10						
b) The area equals: (-4 -3)						
	1	1				Calculate the
$\int 1 \qquad 125 \qquad \qquad$						area of the
$(f(x)-g(x))dx = \frac{2\pi x^2}{6} \approx 20.8333$						region
J-4						bounded by
(-4,89,-9.13)						two graphs and
The area can also be determined graphically.						between two x-
-13.43						values
					ļ	
c) The derivative <i>fp</i> of <i>f</i> :						Determine
$\mathbf{fp}(x) := \frac{d}{d}(\mathbf{f}(x)) + Fertig$						the x-coord.
dx						Explore the
solve $(\mathbf{fp}(x)=1.x) + x = \frac{-3}{2}$		2	2			relationship
2						between
The r-coordinate is $\frac{-3}{-3}$						graphs/derivat.
2						Characterize
The tangent line at this point is drawn on the graph (not required by the students)						the parallelism
						of two lines
				<u> </u>		

B2								Analysis
Use your calculator in a), b), d), and e).							15	<b>S7:</b> Exponential
								functions
In an experiment the steeping time for gr	een tea leaves	is studied.						
Hot water is poured over the tea leaves.								
The theine in the tea leaves is then disso	lved in the	0						
hot water.		0 SO						
The theine content in the hot tea as a fun	nction of time							
is modelled by the function / defined by		Contraction of the second						
$f(x) = 48 \cdot (1 - e^{-0.5x})$ ,								
where $f(x)$ is the theine content in the he	ot tea, measure	ed in mg per gram of						
tea, and x is the time in minutes after the	hot water was	poured over the tea						
leaves.								
	8 8 8	35.3						
a) Calculate the theine content after 1	minute and afte	er 6 minutes.						
b) Draw the graph of f for the first 10 m	inutes.							
<li>c) Interpret the factor 48 in the above equilation</li>	lation.							
d) The tea is ready to drink when the their	ne content reac	hes 33.6 mg/g.						
Determine at what time the tea will be r	ready to drink.							
<ul> <li>e) The tea also contains tannin. The tanni function of time is modelled by the func-</li> </ul>	in content in the	e hot tea as a						
27								
$g(x) = \frac{37}{1 + e^{-3x+6}}$ ,								
where $q(y)$ is the tannin content in the	hot tes meser	red in ma per						
gram of tea, and $x$ is the time in minute	s after the hot	water was poured						
over the tea leaves.	is uner the nor i	rater mas poures						
The taste of tea is best when the tanning	n content growth	h rate g'(x) is at						
its maximum.	tee will be been							
Determine at what time the taste of the	e tea will be best	L						
$f(x) = 48 \cdot (1 - e^{-0.6 \cdot x}) \cdot Fertig$	60 [ Y							
a)	f2(x	d)=48						Calculate the
f(1) = 21.657 $f(6) = 46.6885$	+		1	1				y-value
Concentration after 1 minute: 21.6 mg/g	ţ	$f_1(y) = \{f(y)   y \ge 0$						Durau tha
Concentration after 6 minutes: 46.7 mg/g	Ŧ	100 00000	1	2				Draw the
b) see graph $\rightarrow$								graph
c) lim (r(x)) • 48.	/(2	(01,33.6) es(a)=33.6						
The upper limit of the theine concentration		15(4)-55.6			1	2		Calculate a
See graph a	1/							a factor
d) solve $(f(x)=33, 6, x) + x=2,00662$	1 /		2					
After 2.0 minutes the concentration is 33.6	‡ /		2	1				Solve an
mg/g	‡/							equation
Can also be found by using the intersection		-27.5A						
commune.	21	·····						
F	4 1 1	10						



B3						Probability
Use your calculator in all questions.					15	<b>S6:</b> General
						probability
A factory has two machines, one fills pineapple juice into cans and the other						rules,
fills iced tea into cans.						Dependent
The requirement is that each can contains 33 centilitres (cL). Cans which						events, Conditional
contain less than 31.5 cL or more than 34 cL are classified as incorrectly filled						probabilitios
						<b>S7</b> .Normal
a) The volume of pineapple juice filled into each can follows a normal distribution with mean $\mu = 32.5$ cL and standard deviation $\sigma = 0.5$ cL.						distribution
A can of pineapple juice is selected at random.						
Show that the probability that this can is incorrectly filled is 0.0241.						
40 % of all cans filled at the factory are cans of iced tea. 3.25 % of the cans of iced tea are classified as incorrectly filled.						
b) From the factory of one is observe at readom						
b) From the factory, a can is chosen at random.						
Show that the probability that this can is classified as incorrectly filled is 0.0275.						
<ul> <li>Given that a randomly selected can is incorrectly filled, calculate the probability that it contains pineapple juice.</li> </ul>						
The pineapple cans are packaged in packs of 6.						
<ul> <li>Calculate the probability that there is exactly one incorrectly filled can in a randomly selected pineapple juice six-pack.</li> </ul>						
<ul> <li>Calculate the probability that there is more than one incorrectly filled can in a randomly selected pineapple juice six-pack.</li> </ul>						
						Calculate a
						probability
a) <i>P</i> (incorrectly filled from A) = 1-normCdf(31.5,34,32.5,0.5) = <b>0.0241</b>		2	1			(normal
or normCdf( $-\infty$ ,31.5,32.5,0.5)+normCdf(34, $\infty$ ,32.5,0.5) = 0.0241						distribution
b) $P(\text{incorrectly filled}) = P(\text{incorrectly filled} A) \cdot P(A) + P(\text{incorrectly filled} B) \cdot P(B) =$		1	2			Know the rules
$0.0241 \cdot 0.6 + 0.0325 \cdot 0.4 = 0.02746$						for a
i.e. 2.75 % of all cans are classified as incorrectly filled						conditional
c) P(pineapple   incorrectly filled) = $\frac{P(\text{pineapple} \cap \text{incorrectly filled})}{P(\text{incorrectly filled})}$ =			1	2		probability Investigate,
$\frac{P(\text{incorrectly filled   pineapple}) \cdot P(\text{pineapple})}{P(\text{incorrectly filled})} = \frac{0.0241 \cdot 0.6}{0.02746} = 0.526584$						<b>connect</b> and <b>apply</b>
or by using the rounded off result from b): $\frac{0.0241 \cdot 0.6}{0.0275} = 0.525818$						Calculate
d) P(exactly 1 incorrectly filled can in the 6-pack) =		4				probabilities
binomPdf $(6, 0.0241, 1) = 0.127996 \approx 0.128$	2	T				for a random
e) P(more than 1 incorrectly filled can in the 6-pack) =						variable with a
binomCdf $(6, 0.0241, 2, 6) = 0.008167 \approx 0.0082$ .	1	2				binomial distribution

B4									Statistics
Use The	your calculator in a), b table below shows the	), c), d global	) and f).	n of plast	ic from 20	10 to 2013.		20	<b>S7:</b> Visualization, Correlation,
GUUN									Regression
	Year		2010	2011	2012	2013			
	Time in years after 2010	×	0	1	2	3			
	Plastic production (million tonnes)	У	313	325	338	352			
			Sour	ce: https://ww	w.theatlas.co	m/charfs/BkA1	VFsyrb		
The	function f defined by						ALL		
		f()	x) = e ^{5.745+0}	1040x					
is a f(x) afte	n exponential model ba ) is an estimate of the p r 2010.	ased or plastic (	n the data production	given. in million	tonnes at	time x in y	ears		
a)	On the same diagram, table, and draw the gra	draw a aph of t	a scatter p the functio	lot repres	enting the	data from t	the		
b)	Using the function f,	estim	ate the pl	astic pro	duction fo	r 2015.			
c)	Using the function f, the first time, exceed	estim d 450 i	ate in whi million tor	ich year t nnes.	he plastic	productio	n will, for		
d)	Determine an equat of y on x using the d Give the number b d	ion in f lata giv correct	the form ven. to four de	y = a · b ^x ecimal pl	of the exp aces.	ponential r	egression		
For	e) and f) use the exp	onent	ial regres	sion mod	lel g, whe	re			
		ç	y(x) = 313	3 · 1.040*					
e)	What is the annual p	ercen	tage grov	vth rate in	n the mod	el g?			
f)	Using each of the tw Comment on your re	/o moc	dels, estin	nate the j	plastic pro	duction in	2020.		

