CONTENT

1.	Generic Matrix Chemistry	2
	Paper-specific Matrix	
3.	Sample Bac written examinations	4
4.	Marking scheme	16

1. Generic Matrix Chemistry

Question	competence	Weight in %	Weight in points
Question A1	Knowledge and Comprehension	25	5-8
inorganic chemistry	Application	50	10-15
	Analysis and Evaluation	25	5-8
		Total A1	25
Question A2	Knowledge and Comprehension	25	5-8
inorganic chemistry	Application	50	10-15
	Analysis and Evaluation	25	5-8
		Total A2	25
Question B1	Knowledge and Comprehension	25	5-8
organic chemistry	Application	50	10-15
	Analysis and Evaluation	25	5-8
			25
Question B2	Knowledge and Comprehension	25	5-8
organic chemistry	Application	50	10-15
	Analysis and Evaluation	25	5-8
		Total B2	25
		Total exam	100

2. Paper-specific Matrix

Question	competence	Weight in %	Weight in points
Question A1	Knowledge and Comprehension	28	7
inorganic chemistry	Application	52	13
	Analysis and Evaluation	20	5
		Total A1	25
Question A2	Knowledge and Comprehension	24	6
inorganic chemistry	Application	55	13
	Analysis and Evaluation	24	6
		Total A2	25
Question B1	Knowledge and Comprehension	24	6
organic chemistry	Application	48	12
	Analysis and Evaluation	28	7
			25
Question B2	Knowledge and Comprehension	24	6
organic chemistry	Application	52	13
	Analysis and Evaluation	24	6
		Total B2	25
		Total exam	100

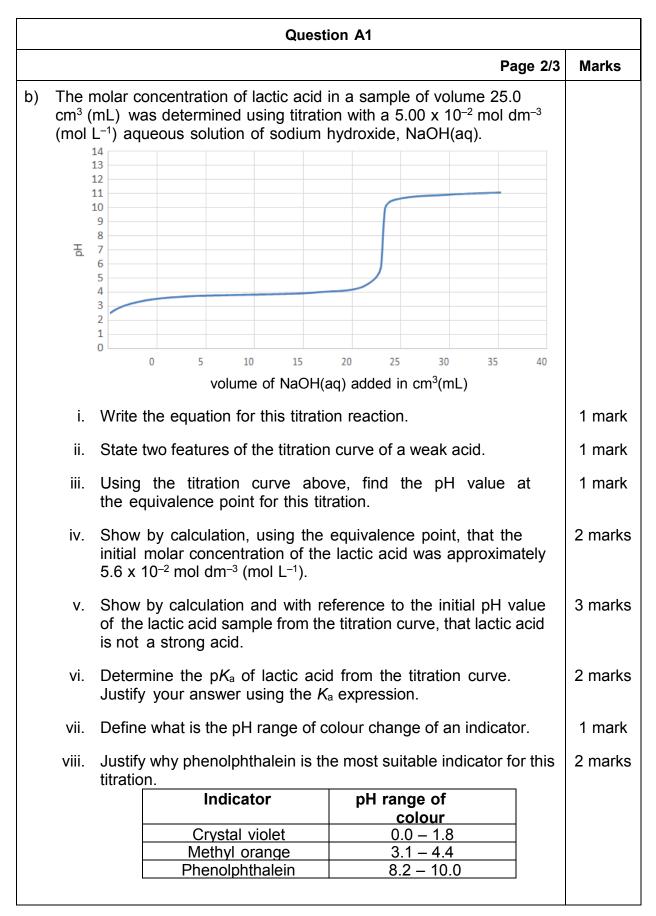
EUROPEAN BACCALAUREATE 2020

CHEMISTRY

DATE: 2 June 2020

DURATION OF EXAMINATION:

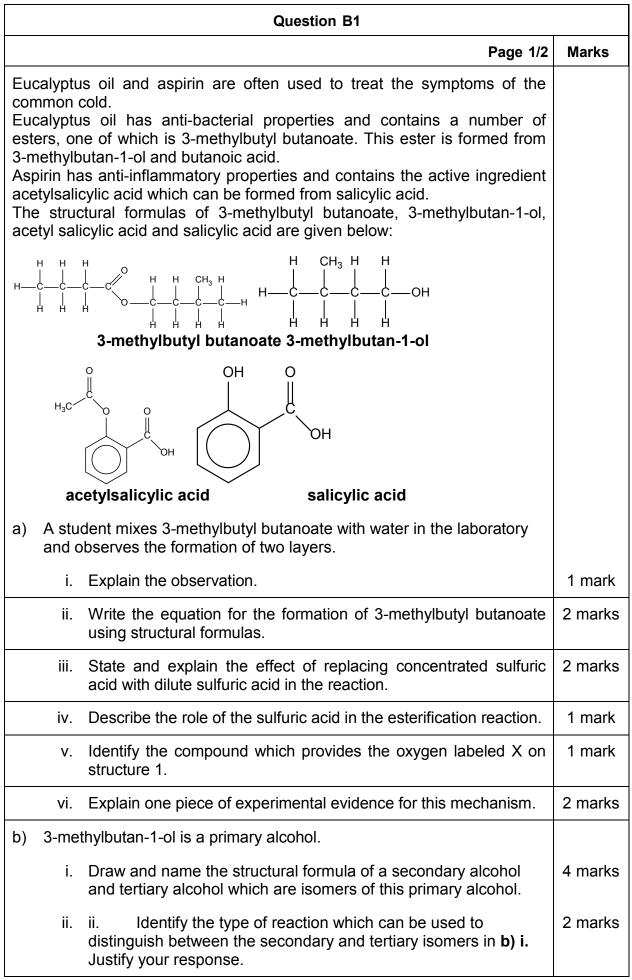
3 hours (180 minutes)

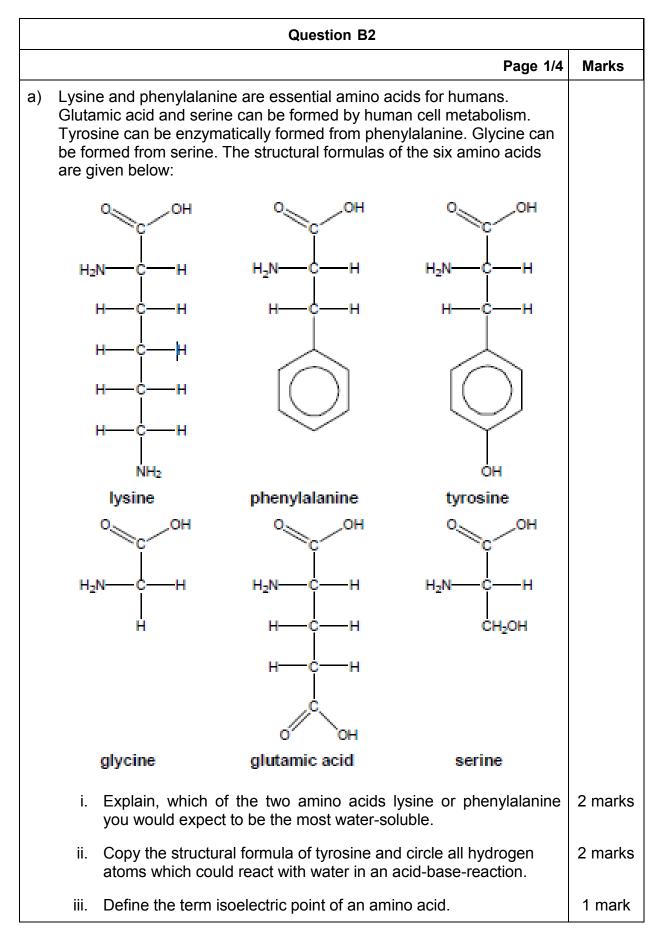

PERMITTED EQUIPMENT:

Calculator: TI-Nspire in 'Press-to-Test' mode

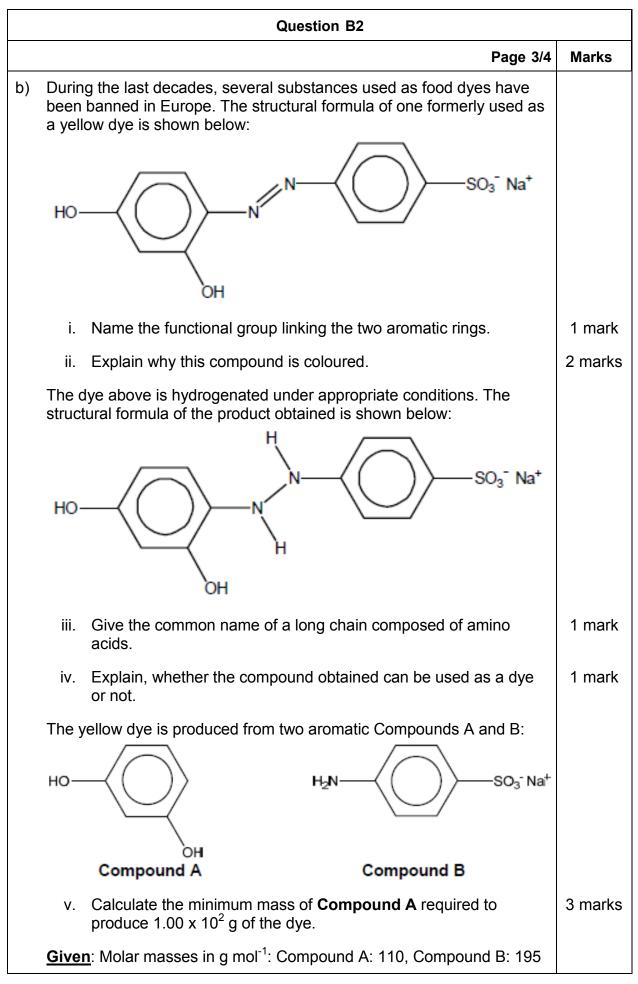
INSTRUCTIONS:

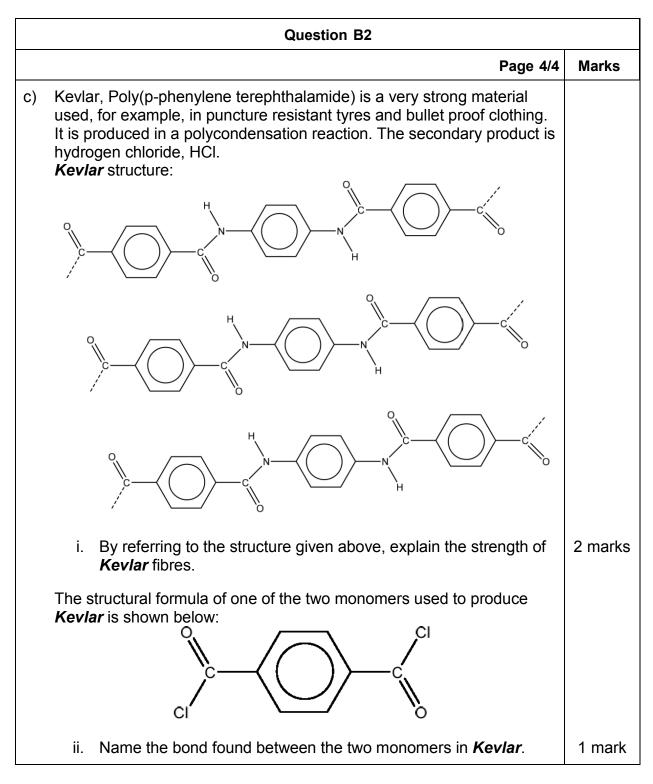
- Answer both A questions and both B questions
- Use a different page for each of the four questions
- All relative atomic mass values are given in the periodic table of the elements provided. These values are the same as the molar mass values in g mol⁻¹.


		Question A1		
		Page 1/3	Marks	
a)		c acid, $C_3H_6O_3$, is a monoprotic "Brønsted acid". When ising, lactic acid can be produced in the muscles.		
	If a concentration of 3.00×10^{-3} mol dm ⁻³ (mol L ⁻¹) is reached in one's blood, the muscles can hurt and cramp. It is suggested that drinking a lot of water helps to reduce the high concentration of lactic acid in the body.			
	<u>Giver</u>	<u>n</u> : Ka for lactic acid		
	i.	Define the term "Brønsted acid".	1 mark	
	ii.	Give the formula of the conjugate base of the lactic acid molecule.	1 mark	
	iii.	Write the equation for the reaction of lactic acid with water.	1 mark	
	iv.	Write the expression for the acid ionisation constant, K_{a} , of a generic acid AH.	1 mark	
		intense training an athlete's blood was analysed. The lactic acid concentration was $1.85 \times 10^{-1} \text{ g dm}^{-3}$ (g L ⁻¹).		
	V.	Justify by calculation that the athlete drank enough water to avoid cramps caused by lactic acid.	2 marks	
		concentrated aqueous solutions of lactic acid are used in a rch project.		
	vi.	State the mathematical formula used to calculate the $[H^+]$ of a weak acid.	1 mark	
	vii.	Calculate the pH of a solution of lactic acid with an initial concentration of 1.00 x 10^{-1} mol dm ⁻³ (mol L ⁻¹) at 25°C.	2 marks	
	<u>Giver</u>	<u>n</u> : $K_a(C_3H_6O_3(aq)) = 1.38 \times 10^{-4} \text{ at } 25^{\circ}\text{C}$		


		Question A1	
		Page 3/3	Marks
c)	is kep other	an blood normally has a pH value of 7.4 at 37 °C. This value of constant by a buffer solution which contains, amongst species, carbonic acid, $H_2CO_3(aq)$, and the hydrogen nate ion, HCO $^3(aq)$.	
	i.	Explain how this buffer system works. Include in your answer two relevant equations.	3 marks
	ii.	Assuming that carbonic acid is a monoprotic acid, calculate the ratio: $\frac{[HC0^3(aq)]}{[H_2C0_3(aq)]}$ at pH = 7.4 at 37 °C.	2 marks
	<u>Give</u>	<u>n</u> : p <i>K</i> _a (H₂CO₃(aq)) = 6.1 at 37 °C	

		Question A2	
		Page 1/2	Marks
a)	a) An electrochemical cell was constructed using the couples:		
		$ \begin{array}{ll} I_{2(aq)}, \ / \ I^{-}_{(aq)} & E^{\circ} & = \ + \ 0.54 \ V \\ Fe^{3+}_{(aq)}, \ / \ Fe^{2+}_{(aq)} & E^{\circ} & = \ + \ 0.77 \ V \end{array} $	
	i.	Write the oxidation half equation.	1 mark
	ii.	Write the reduction half equation.	1 mark
	iii.	Write the overall balanced equation when the cell is operating.	1 mark
	iv.	Calculate the emf that the cell would generate under standard conditions.	1 mark
	V.	Draw a clearly labeled diagram of the electrochemical cell. Indicate on your diagram the polarity of the electrodes, the direction of electron flow and of ion flow.	4 marks
	vi.	List what are 'standard conditions' as described in part (iv) above.	2 marks
b)	 b) Sodium nitrite, NaNO₂, and sodium nitrate, NaNO₃, are used to preserve meat. In order to determine the quantity of sodium nitrite in a preservative, 5.00 g of the preservative were dissolved in water and the resulting solution reacted with a 3.00 x 10⁻¹ mol dm⁻³ solution of acidified potassium dichromate, K₂Cr₂O₇. During the reaction, the Cr₂O₇²⁻(aq) ions are converted into Cr³⁺(aq) ions while the NO₂ (aq) ions are converted into NO₃ (aq) ions. 10.8 cm³ of the K₂Cr₂O₇ solution are required to react with all the sodium nitrite present in the sample. 		
	i.	Write the half-equations for the reduction and oxidation processes.	2 marks
	ii.	Write the overall balanced equation for the reaction.	2 marks
	iii.	Show that the amount, in moles, of nitrite ions present in the initial solution equals	3 marks


		Question A2	
		Page 2/2	Marks
c)	۲ ۲ (The following standard electrode potentials at 25°C: $K^{+}(aq) / K(s) = -2.92 V$ $H_2O(aq) / H_2(g), = -0.41 V$ $D_2(g) / H_2O(aq) = +0.81 V$ $Br_2(aq) / Br^{-}(aq) = -1.07 V$	
	i.	Write the chemical equations for the reactions occurring at the positive and negative electrode during the electrolysis of molten potassium bromide.	2 marks
	ii.	In an experiment, a current of 3.00 A was passed through molten potassium bromide for 30 minutes. Calculate the mass of product formed at the positive electrode. <u>Given</u> : Faraday constant, $F = 9.65 \times 10^4$ C mol ⁻¹	3 marks
	iii.	State what species you would expect to be formed at each electrode during the electrolysis of an aqueous solution of potassium bromide. Justify your answer by referring to the electrode potentials given.	3 marks



Question B1		
	Page 2/2	Marks
iii. Give the balanced equation for the reaction	in b) ii.	2 marks
In the eucalyptus plant 3-methylbutan-1-ol can be methylbutanoic acid.	converted to 3-	
iv. Give the structural formula of 3-methylbutan	oic acid.	1 mark
The p K_a value of butanoic acid is 4.82 and that of acid is 5.01.	3-methylbutanoic	
v. Explain the difference in these pK _a values a difference is relatively small.	nd why this	2 marks
Salicylic acid has a p K_a value of 2.97.		
vi. With reference to the structure of salicylic ac pK_a is much lower than that of butanoic acid methylbutanoic acid.		2 marks
 Aspirin helps to prevent inflammation by reacting v serine, HO-Ser₅₃₀, which is part of a particular prof (the number 530 refers to the position of serine in the position of serine) 	tein, as shown below	
$H_{0} = \frac{1}{2} + \frac{1}{2$	О С + X Ser ₅₃₀ ОН	
i. Give the structural formula of the reaction p Ser_{530} .	roduct using O—	1 mark
In the laboratory salicylic acid can be formed from acetylsalicylic acid.	om the hydrolysis of	
ii. Write the equation for the reaction using stru	ictural formulas.	2 marks

Question B2				
			Page 2/4	Marks
 iv. Give the structural formula of the predominant species of glycine at the isoelectric point. 			1 mark	
	The isoelectric po	int for serine is 5.68 at 25	°C.	
V.		al formula of the predomir ution with a pH = 3.0.	nant species of serine	1 marl
	Consider the follo	wing table:		
	Compound	Molar mass in g mol ⁻¹	Melting point in °C	
	Serine	105	246	
	Hexan-1-ol	102	-45	
Com	given compounds pound M can be		Iting points of the two amino acids given in	
	pound M can be tion a) react with or		amino acids given in formula is: $\frac{NH_2}{C}$	2 mark
ques HC	pound M can be tion a) react with or $H = H$	formed when two of the ne another. The structural H	amino acids given in formula is: $ \begin{array}{c} $	
ques	pound M can be tion a) react with or $H = H$	formed when two of the ne another. The structural H	amino acids given in formula is: $ \begin{array}{c} $	
ques HC	pound M can be tion a) react with or H H HC C C CH HH H H HH H H HH H H H H H H H H H	formed when two of the ne another. The structural H	amino acids given in formula is: $ \begin{array}{c} $	1 mar
ques HC Vii. Viii. Glyci	pound M can be tion a) react with or H H HC C C $CNH_2 HName the functionIdentify the two ar$	formed when two of the ne another. The structural H	amino acids given in formula is: $ \begin{array}{c} $	1 marl 2 mark

EUROPEAN BACCALAUREATE 2020

CHEMISTRY

DATE: 2 June 2020

ANSWERS AND MARK SCHEME

The following are the suggested answers together with the mark scheme for the correction of the papers. The answers are not necessarily 'model' answers. Where a candidate has given a correct alternative answer or used a different correct method to arrive at an answer full credit should be given. The use of state symbols (i.e. (aq), (s), (l) and (g)) in the answers is optional. Accept either H^+ or H_3O^+ for a proton in water.

Numerical answers have been given to three significant figures.

A suggested breakdown showing the minimum needed for each marking point has been given.

		Question A1		СОМ	PETE	NCES
		Page 1/2	Marks	кс	AP	AE
a)	i.	Proton donor [1]	1 mark	1		
	ii.	C ₃ H ₅ O ₃ ⁻ (aq) [1]	1 mark		1	
	iii.	C ₃ H ₆ O ₃ (aq) + H ₂ O(l)	1 mark		1	
	iv.	$K_{a}(HX(aq)) = [X^{-}(aq)] \times [H_{3}O^{+}(aq)] / [HX(aq)] [1]$	1 mark	1		
	V.	$\begin{split} &\textit{M}(C_3H_6O_3) = 90.1 \text{ g mol}^{-1} \ \textbf{[1]} \\ & [C_3H_6O_3(aq)] \\ &= 1.85 \text{ x } 10^{-1} / 90.1 = 2.05 \text{ x } 10^{-3} \text{ mol } dm^{-3} \text{ (mol } L^{-1}) \\ & 1) \ \textbf{[1]} \\ & (\ [C_3H_6O_3(aq)] < 3.00 \text{ x } 10^{-3} \text{ mol } dm^{-3} \text{ (mol } L^{-1}) \\ & \text{ so the athlete drank enough water.)} \\ & () \textit{ not required} \end{split}$	2 marks			2
	vi.	$[H_3O^+(aq)] = (C_aK_a)^{1/2}$	1 mark	1		
	vii.	$ \begin{array}{l} (\ [C_3H_5O_3\ (aq)] = \ [H_3O^+(aq)] \\ \text{weak acid:} \ [C_3H_6O_3(aq)] = 1.00 \ x \ 10^{-1} \ \text{mol} \ dm^{-3} \\ (\text{mol} \ L^{-1}) \) \\ [H_3O^+(aq)]^2 = K_a(C_3H_6O_3(aq)) \ x \ [C_3H_6O_3(aq)] \\ [H_3O^+(aq)] = (1.38 \ x \ 10^{-4} \ x \ 1.00 \ X \ 10^{-1})^{1/2} \ \textbf{[1]} \\ &= 3.71 \ x \ 10^{-3} \ \text{mol} \ dm^{-3} \ (\text{mol} \ L^{-1}) \\ pH = 2.43 \ \textbf{[1]} \\ () \ \text{not required} \end{array} $	2 marks		2	
b)	i.	$C_{3}H_{6}O_{3}(aq) + OH (aq) \rightarrow C_{3}H_{5}O_{3} (aq) + H_{2}O(I)$ [1]	1 mark		1	
	ii.	presence of a buffer zone and pH at equivalence higher than 7	1 mark	1		
	iii.	pH = 8.0 [1] (accept pH between 7.5 and 8.5)	1 mark		1	
	iv.	$\begin{split} n(OH^{-}(aq)) &= (\ [OH^{-}(aq)] \times V(OH^{-}(aq)) \) \\ &= 5.00 \times 10^{-2} \times 28 \times 10^{-3} \\ &= 1.4 \times 10^{-3} \text{ mol} = n(C_3H_6O_3(aq)) \ \textbf{[1]} \\ [C3H6O3(aq)] &= (\ n(C_3H_6O_3(aq)) / (C_3H_6O_3(aq)) \) \\ &= 1.4 \times 10^{-3} / 25 \times 10^{-3} \ \textbf{[1]} \\ &= 5.6 \times 10^{-2} \text{ mol dm}^{-3} \ (\text{mol } L^{-1}) \ \textbf{(given)} \\ () \ not \ required \end{split}$	2 marks		2	
	V.	If $C_3H_6O_3(aq)$ was a strong acid then the initial pH would be pH = -log (5.6 x10 ⁻²) = 1.3 [1] , but according to the graph, the initial value is pH = 2.6 > 1.3 [1]	2 marks			2

		Question A1		СОМ	PETE	NCES
		Page 2/2	Marks	кс	AP	AE
	vi.	$\begin{split} & K_{a}(C_{3}H_{6}O_{3}(aq)) = [C_{3}H_{5}O_{3} \ (aq)] \ x \\ & [H_{3}O^{^{+}}(aq)] \ / \ [C_{3}H_{6}O_{3}(aq)] \\ & (answer \ to \ question \ a) \ v.) \\ & (\ so \ pH = pKa(C_{3}H_{6}O_{3}(aq)) + \log(\ [C_{3}H_{5}O_{3}^{^{-}}(aq)] \\ & / \ [C_{3}H_{6}O_{3}(aq)] \) \) \\ & At \ the \ half \ equivalence \ point \ of \ the \ titration \\ & curve \ the \ pH = 3.9 \pm 0.2 \ and \ [C_{3}H_{6}O_{3} \ (aq)] = \\ & [C_{3}H_{5}O_{3}^{^{-}}(aq)] \ [1] \\ & so \ pH = pK_{a}(C_{3}H_{6}O_{3}(aq)) \ (or \ K_{a}(C_{3}H_{6}O_{3}(aq)) = \\ & [H_{3}O^{^{+}}(aq)]) \ [1] \\ & () \ not \ required \end{split}$	2 marks		1	1
	vii.	Accurate definition	1 mark	1		
	viii.	The pH range of colour change of phenolphthalein is on the steepest part of the titration curve [1] (<i>or, accept also:</i> includes the pH at equivalence), so phenolphthalein is the most suitable indicator. [1]	2 marks	1	1	
c)	i.	If the concentration of H3O+(aq) increases, the following reaction will take place: $HCO_3(aq) + H_3O+^{(}aq) \rightarrow H_2CO_3(aq) + H_2O(I)$ If the concentration of OH (aq) increases, the following reaction will take place: $H_2CO_3(aq) + OH(aq) \rightarrow HCO_3(aq) + H_2O(I)$ <i>Equations</i> [1] + [1], <i>explanation</i> [1]	2 marks	1	1	
	ii.	$pH = pK_{a}(H_{2}CO_{3}(aq)) + log([HCO_{3} (aq)] / [H_{2}CO_{3}(aq)])$) [1] so [HCO_{3}^{-}(aq)] / [H_{2}CO_{3}(aq)] = 10^{pH-pKa(H_{2}CO_{3}^{-}(aq))} = 10 ^{7.4-6.1} = 20 [1]	2 marks		2	

		Question A2		СОМ	PETE	NCES
		Page 1/2	Marks	кс	AP	AE
a)	i.	$2I^{-}(aq) \rightarrow I_{2}(aq) + 2e^{-}$	1 mark	1		
	ii.	$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	1 mark	1		
	iii.	$2I^{-}(aq) + 2Fe^{3+}(aq) \rightarrow I_2(aq) + 2Fe^{2+}(aq)$	1 mark		1	
	iv.	E.m.f. = +0.77 – 0.54 = +0.23V	1 mark		1	
	V.	electron flow	4 marks	1	3	
		Inert electrode, negative pole lodide solution				
		[Assign 1 mark Knowledge and Comprehension for the blank diagram, 1 mark Application for polarity of electrodes, 1 mark Application for direction of electrons, 1 mark Application for ion flow]				
	vi.	Concentration solutions of 1 mol dm ^{-3} [1], pressure of 1 atm (not required here), 25 °C. [1]	2 marks	2		
b)	i.	Oxidation: $NO_2^{-}(aq) + H_2O(I) \rightarrow NO_3^{-}(aq) + 2H^{+}(aq) + 2e^{-}$ [1]	2 marks		2	
		Reduction: $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^{-+} \rightarrow 2Cr^{3+}(aq) + 7H_2O(I)$ [1]				
	ii.	$Cr_2O_7^{2-}(aq) + 3NO_2^{-}(aq) + 8H^+(aq) \rightarrow 2Cr^{3+}(aq) + 3NO_3^{-}(aq) + 4H_2O(I)$ [2]	2 marks		2	
	iii.	Mol $Cr_2O_7^{2-}$: 0.0108 dm ⁻³ x 3.00 x 10 ⁻¹ mol dm ⁻³ = 3.24 x 10 ⁻³ mol [1] Mol NO ₂ ⁻ : 3.24 x 10 ⁻³ mol x 3 = 9.72 x 10 ⁻³ mol [1 mark Analysis/Evaluation, 1 mark Application]	3 marks		2	1

	Question A2			COMPETENCES		
		Page 2/2	Marks	кс	AP	AE
c)	i.	$K^{+}(I) + e^{-} \rightarrow K(I)$ [1 mark AE]	1 mark			1
		$2Br^{-}(I) \rightarrow Br_{2}(I) + 2e^{-}[1]$	1 mark			1
	ii.	At the positive electrode, formation of Bromine.	3 marks	1	2	
		$n_e = rac{I imes t}{F}$ [1]				
		$n_e = \frac{3.00A \times 1800 s}{9.65 \times 10^4 mol^{-1}} = 5.56 \times 10^{-2} mol e^{-1}$ [1]				
		Mass of Br ₂ : 5.56 x 10 ⁻² x ½ x 159.8 = 4.47 g [1]				
	iii.	You would expect the formation of $O_2(g)$ at the anode, and the formation of $H_2(g)$ at the cathode. [1]	3 marks			3
		The couple H_2O/H_2 has a less negative E_{red} than the K ⁺ /K couple therefore it would be preferred. [1]				
		The oxidation of water to $O_2(g)$ would be preferred over the oxidation of bromide ion as the couple Br_2/Br^- has a more positive E_{red} than the O_2/H_2O couple. [1]				

	Question B1				COMPETENCES		
		Page 1/2	Marks	кс	AP	AE	
a)	i.	Due to the hydrophobic hydrocarbon chains, 3- methylbutylbutanoate is not miscible to water (<i>or</i> the ester is non-polar whereas water is polar) [1]	1 mark			1	
	ii.	H = H = H = H = H = H = H = H = H = H =	2 marks		2		
		$\begin{array}{c} H & H & H \\ H & - \begin{array}{c} L \\ - \end{array} \begin{pmatrix} 0 \\ \end{pmatrix} \begin{pmatrix} 0 \\ - \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \end{pmatrix} \begin{pmatrix} 0 \\ - \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \\ \end{pmatrix} \begin{pmatrix} 0 \\ \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \\ \end{pmatrix} \begin{pmatrix} 0 \\ \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \\ \end{pmatrix} \begin{pmatrix} 0 \\ \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \\ \\ \\ \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ \\ \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \end{array} \\ \\ \\ \\ \\ \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \end{array} \\ \\ \\ \\ \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \end{pmatrix} \begin{pmatrix} 0 \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$					
		Formula of butanoic acid [1]; Stoichiometry (water) [1]					
	iii.	If concentrated $H_2SO_{4(aq)}$ is replaced with diluted $H_2SO_{4(aq)}$ the equilibrium is shifted towards the reactants [1]. This is explained by the Le Chatelier principle, related to the addition of H_2O (product). [1]	2 marks		1	1	
	iv.	H_2SO_4 catalyzes the reaction. [1]	1 mark	1			
	V.	3-methylbutan-1-ol [1]	1 mark	1			
	vi.	By radiolabelling 3-methylbutanol with the ¹⁸ O radioisotope. [1]. If after the reaction with butanoic acid the ¹⁸ O radioisotope is detectable as the bridging oxygen in the ester 3- methylbutylbutanoate, this proves that the linking oxygen atom comes from the alcohol. If it is detectable in the water molecule after the reaction then the linking oxygen atom is derived from the butanoic acid. [1] <i>Or comparable reasoning with</i> ¹⁸ O <i>in the HO-group [1] of the butanoic acid.</i>	2 marks	1		1	
b)	i.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 marks		4		
	ii.	Oxidation [1] which is possible with the secondary alcohol but not the tertiary alcohol [1]	2 marks	2			
	iii.	Use of KMnO ₄ (aq) (<i>or</i> K ₂ Cr ₂ O ₇) [1] Correct balanced reaction [1]	2 marks	1	1		

	Question B1				COMPETENCES		
	Page 2/2	Marks	кс	AP	AE		
iv.	$H = \begin{bmatrix} CH_3 & H \\ H & H \end{bmatrix} = \begin{bmatrix} CH_3 & H \\ H &$	1 mark		1			
v.	The positive inductive effect of the methyl group in 3-methylbutanoic acid increases the electron density on the carboxyl group thus increasing the attraction of the proton. [1] Therefore 3- methylbutanoic acid is a weaker acid compared to butanoic acid. However, the difference is relatively small because the methyl group is not close to the carboxyl group. [1]	2 marks			2		
vi.	The delocalization of the pi electrons of the phenyl group (mesomeric effect) [1] decreases the electron density on the carboxyl group thus decreasing the attraction of the proton. [1]	2 marks			2		
c) i.	O H ₃ C H ₃ C (1]	1 mark		1			
ii.	H_3C O O OH OH	2 marks		2			
	Salicylic acid [1]Ethanoic acid [1]						

	Question B2			COMPETENCES		
		Page 1/2 Marks		кс	AP	AE
a)	i.	Lysine is the most water soluble as it does not contain a hydrophobic benzene ring [1] and it also contains an extra polar amino group [1] .	2 marks			2
	ii.		2 marks		2	
	iii.	The isoelectric point is the pH of an aqueous solution at which the amino acid has a neutral charge [1]	1 mark	1		
	iv.	$H_{3N} - H_{H}$ [1]	1 mark		1	
	V.		1 mark		1	
	vi.	Serine: Strong ionic bonds (between the zwitterions) [1]. Hexan-1-ol: Weaker hydrogen bonds (and Van der Waal's forces) [1]. () <i>not required</i>	2 marks			2
	vii.	Ester linkage [1]	1 mark	1		
	viii.	Glutamic acid [1] and Serine [1]	2 marks		2	

Question B2					COMPETENCES		
	Page 2/2 Marks				AP	AE	
	ix.	$\begin{array}{c} & & & \\ & & & \\ H & & \\$	2 marks		2		
		[1] [1]					
b)	i.	Azo group. [1]	1 mark	1			
	ii.	The molecule contains extensive conjugation or delocalisation of electrons across the double bonds and the two benzene rings, [1] , which makes the absorption of light in the visible region possible. [1]	2 marks	1	1		
	iii.	Protein	1 mark	1			
	iv.	No, the hydrogenated molecule can't be used as a dye because the delocalisation is not extended enough anymore. [1] (the double bond between the two nitrogen atoms is now a single bond.) () not required	1 mark		1		
	V.	(The calculation involves the calculation of the amount of dye, which is identical to the amount of A required:) M(dye) = M(A) + M(B) + M(N) - 3 M(H) = 110 +195 +14.0 -3.03 = 316 g mol ⁻¹ [1] $n(dye) = n(A) = \frac{m(dye)}{M(dwe)} = \frac{100}{316} = 0.316 \text{ mol} = 3.16 \text{ x } 10^{-1} \text{mol}$ [1] (From this amount, the mass of A can be calculated:) $m(A) = n(A) \times M(A) = 0.316 \times 110 = 34.8 \text{ g [1]}$ () not required	3 marks		3		
c)	i.	The Poly(p-phenylene terephthalamide)-molecule contains hydrogen bonding between the chains [1]. Long chain molecules stiffened due to conjugation through benzene rings and amide links. [1] <i>Any correct explanation including the Phenyl group is to be accepted.</i>	2 marks			2	
	ii.	Peptide bond [1]	1 mark	1			